People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Wozniak, Jaroslaw
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2023Synthesis of Ti3SiC2 Phases and Consolidation of MAX/SiC Composites—Microstructure and Mechanical Propertiescitations
- 2022Modelling and Characterisation of Residual Stress of SiC-Ti3C2Tx MXene Composites Sintered via Spark Plasma Sintering Methodcitations
- 2021Antimicrobial performance of Ti3C3 MXene-based point-of-use water filters
- 2021Influence of Ti3C2Tx MXene and Surface-Modified Ti3C2Tx MXene Addition on Microstructure and Mechanical Properties of Silicon Carbide Composites Sintered via Spark Plasma Sintering Methodcitations
- 2021Silicon carbide nanocomposites reinforced with disordered graphitic carbon formed in situ through oxidation of Ti3C2 MXene during sinteringcitations
- 2021MXene-based materials for the application in point-of-use water filters
Places of action
Organizations | Location | People |
---|
document
Antimicrobial performance of Ti3C3 MXene-based point-of-use water filters
Abstract
MXenes were first introduced by Naguib et al. in 2011. These are transitional metal carbides and/or nitrides, which possess layered structure and unique properties. The most common method of obtaining MXenes comprise selective acid etching of parental MAX phases with the general formula of Mn+1AXn. Herein, M stands for a transitional metal, A is an A-group element, X is carbon and/or nitrogen, while n = 1, 2 or 3 [1]. After etching, the obtained Mn+1Xn MXene is further delaminated to individual flakes with a wide range of applications [2].Due to their adsorptive, antibacterial, and hydrophilic properties, MXenes are considered a strong candidate for water treatment applications [3]. In our studies, we have developed Ti3C2/Al2O3/Ag/Cu nanocomposite-based polypropylene fabrics for potential point-of-use (POU) water treatment solid-bed systems. Due to the poor sanitation conditions, POU solutions need to overcome extraordinary issues such as sufficient efficiency at a high flow velocity, low cost, minimal maintenance, and a long life cycle. As we have proven, after oxidation of polypropylene fabrics modified with Ti3C2 MXene and noble metal nanoparticles, it was possible to eliminate microbiological contamination of potentially pathogenic bacteria (E. coli and S. aureus) from filtered water, despite a noticeable increase in flow velocity. Such effect was not observed in the case of filters modified with pristine nanocomposite. What is more, aged nanocomposite-based filtration material shown “self-disinfecting” properties, as it was able to eliminate more than 99% of adsorbed bacteria cells within 24 hours of contact time at room temperature. Lastly, DLS and zeta potential analysis confirmed the stability of filters, as there was no secondary release of nanocomposite into the filtrate. This work sheds more light on the potential application of MXenes for water treatment as well as on their antibacterial properties and the possibility of functionalization.