People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Jakubczak, Michał
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2023Excellent antimicrobial and photocatalytic performance of C/GO/TiO2/Ag and C/TiO2/Ag hybrid nanocomposite beds against waterborne microorganismscitations
- 2023Waste iron as a robust and ecological catalyst for decomposition industrial dyes under UV irradiationcitations
- 2023Application of Micron-Sized Zero-Valent Iron (ZVI) for Decomposition of Industrial Amaranth Dyes
- 2023Novel photo-Fenton nanocomposite catalyst based on waste iron chips-Ti3C2T MXene for efficient water decontaminationcitations
- 2022Tunable Antibacterial Activity of a Polypropylene Fabric Coated with Bristling Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub> MXene Flakes Coupling the Nanoblade Effect with ROS Generationcitations
- 2021Multifunctional carbon-supported bioactive hybrid nanocomposite (C/GO/NCP) bed for superior water decontamination from waterborne microorganismscitations
- 2021Antimicrobial performance of Ti3C3 MXene-based point-of-use water filters
- 2021Biological and Corrosion Evaluation of In Situ Alloyed NiTi Fabricated through Laser Powder Bed Fusion (LPBF)citations
- 2021A Review on Development of Ceramic-Graphene Based Nanohybrid Composite Systems in Biological Applicationscitations
- 2021MXene-based materials for the application in point-of-use water filters
- 2021Filtration Materials Modified with 2D Nanocomposites—A New Perspective for Point-of-Use Water Treatmentcitations
Places of action
Organizations | Location | People |
---|
document
Antimicrobial performance of Ti3C3 MXene-based point-of-use water filters
Abstract
MXenes were first introduced by Naguib et al. in 2011. These are transitional metal carbides and/or nitrides, which possess layered structure and unique properties. The most common method of obtaining MXenes comprise selective acid etching of parental MAX phases with the general formula of Mn+1AXn. Herein, M stands for a transitional metal, A is an A-group element, X is carbon and/or nitrogen, while n = 1, 2 or 3 [1]. After etching, the obtained Mn+1Xn MXene is further delaminated to individual flakes with a wide range of applications [2].Due to their adsorptive, antibacterial, and hydrophilic properties, MXenes are considered a strong candidate for water treatment applications [3]. In our studies, we have developed Ti3C2/Al2O3/Ag/Cu nanocomposite-based polypropylene fabrics for potential point-of-use (POU) water treatment solid-bed systems. Due to the poor sanitation conditions, POU solutions need to overcome extraordinary issues such as sufficient efficiency at a high flow velocity, low cost, minimal maintenance, and a long life cycle. As we have proven, after oxidation of polypropylene fabrics modified with Ti3C2 MXene and noble metal nanoparticles, it was possible to eliminate microbiological contamination of potentially pathogenic bacteria (E. coli and S. aureus) from filtered water, despite a noticeable increase in flow velocity. Such effect was not observed in the case of filters modified with pristine nanocomposite. What is more, aged nanocomposite-based filtration material shown “self-disinfecting” properties, as it was able to eliminate more than 99% of adsorbed bacteria cells within 24 hours of contact time at room temperature. Lastly, DLS and zeta potential analysis confirmed the stability of filters, as there was no secondary release of nanocomposite into the filtrate. This work sheds more light on the potential application of MXenes for water treatment as well as on their antibacterial properties and the possibility of functionalization.