People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Sokołowski, Jerzy
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (22/22 displayed)
- 2024Enhancing the Antimicrobial Properties of Experimental Resin-Based Dental Composites through the Addition of Quaternary Ammonium Saltscitations
- 2023Changes in Strength Parameters of Composite Cements as Affected by Storage Temperature—A Review of the Literaturecitations
- 2023Evaluation of the Selected Mechanical and Aesthetic Properties of Experimental Resin Dental Composites Containing 1-phenyl-1,2 Propanedione or Phenylbis(2,4,6-trimethylbenzoyl)-phosphine Oxide as a Photoinitiatorcitations
- 2023The Shear Bond Strength of Resin-Based Luting Cement to Zirconia Ceramics after Different Surface Treatmentscitations
- 2023Can Modification with Urethane Derivatives or the Addition of an Anti-Hydrolysis Agent Influence the Hydrolytic Stability of Resin Dental Composite?citations
- 2022Can TPO as Photoinitiator Replace “Golden Mean” Camphorquinone and Tertiary Amines in Dental Composites? Testing Experimental Composites Containing Different Concentration of Diphenyl(2,4,6-trimethylbenzoyl)phosphine Oxide citations
- 2021A Comparative Study of the Mechanical Properties of Selected Dental Composites with a Dual-Curing System with Light-Curing Compositescitations
- 2021An Evaluation of the Properties of Urethane Dimethacrylate-Based Dental Resinscitations
- 2021The Influence of Various Photoinitiators on the Properties of Commercial Dental Compositescitations
- 2021The Photoinitiators Used in Resin Based Dental Composite—A Review and Future Perspectivescitations
- 2020Challenges of Co–Cr Alloy Additive Manufacturing Methods in Dentistry—The Current State of Knowledge (Systematic Review)citations
- 2020Ageing of Dental Composites Based on Methacrylate Resins—A Critical Review of the Causes and Method of Assessment citations
- 2019Effect of surface cleaning regimen on glass ceramic bond strengthcitations
- 2018Modyfikacja światłoutwardzalnego kompozytu stomatologicznego wybranymi poliedrycznymi oligomerycznymi silseskwioksanamicitations
- 2017Mechanical properties of composite material modified with essential oilcitations
- 2017Degradacja warstwy hybrydowej - przegląd piśmiennictwa
- 2017The Influence of Water Sorption of Dental Light-Cured Composites on Shrinkage Stresscitations
- 2017Influence of polymerization process condition on selected properties and the shrinkage stress generated during solidification of a nanohybrid universal restorative material
- 2016Wpływ sorpcji wody na naprężenia skurczowe materiałów kompozytowych
- 2016Dental composites based on dimethacrylate resins reinforced by nanoparticulate silicacitations
- 2016Wpływ dodatku przeciwdrobnoustrojowego triklosanu na wybrane właściwości cementu szklano-jonomerowego aktywowanego wodą
- 2014The impact of nanosilver addition on element ions release form light-cured dental composite and compomer into 0.9% NaCl
Places of action
Organizations | Location | People |
---|
article
Wpływ dodatku przeciwdrobnoustrojowego triklosanu na wybrane właściwości cementu szklano-jonomerowego aktywowanego wodą
Abstract
Introduction. Failure of dental restorations iscommonly associated with residual infected dentineunderneath. Dental materials containing antimicrobialsmay overcome the problem of recurrent caries withoutjeopardizing their physicomechanical characteristics.Aim of the study. To evaluate hardness and diametraltensile strength (DTS) of a water-activated glassionomer(WAGIC) enriched with increasing massconcentration of triclosan (TRC) – the antimicrobialagent. Material and methods. TRC was added to thepowder of WAGIC in weight concentrations of 0.5%,1.0%, 1.5%, 2.0% served as experimental groups, and0.0% as a control group, respectively. In each grouptwo subgroups were defined to record Vickers hardness(HV0.3/15) and DTS after 1 and 24 hours of storagein distilled water. Shapiro-Wilk test of normality,parametric (F-test or t-test) or non-parametric(Kruskal-Wallis test or Mann-Whitney test) were usedfor the purpose of statistical analysis (p = 0.05); theequality of variance was checked with Levene’s test. Results. HV0.3/15 was significantly higher after 24 hthan after 1 h. In both cases addition of 0.5 % of TRCcaused significant decrease of hardness. DTS valueswere significantly higher after 24 h with addition of0.5 % TRC, but generally it was slightly decreasedin comparison to the control group. Conclusions.Except 0.5 % TRC, there was no negative influence ofantimicrobial addition on HV0.3/15 and DTS, so TRCdoes not deteriorate strength of WAGIC.