Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Aminou, Aldjabar

  • Google
  • 5
  • 7
  • 7

Vrije Universiteit Brussel

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2024Experimental and Numerical Evaluation of Calcium-Silicate-Based Mineral Foam for Blast Mitigation2citations
  • 2024Sacrificial cladding design for blast mitigation using low density crushable core systems1citations
  • 2023Numerical modeling of brittle mineral foam in a sacrificial cladding under blast loading4citations
  • 2023Blast protection of thin aluminium plates by using mineral foam-core sacrificial claddingcitations
  • 2022Numerical Modeling of Brittle Mineral Foam in a Sacrificial Cladding Under Blast Loadingcitations

Places of action

Chart of shared publication
Ousji, Hamza
2 / 6 shared
Belkassem, Bachir
5 / 25 shared
Rhouma, Mohamed Ben
2 / 2 shared
Pyl, Lincy
5 / 60 shared
Lecompte, David
5 / 17 shared
Dhouibi, Mohamed
1 / 1 shared
Atoui, Oussama
2 / 5 shared
Chart of publication period
2024
2023
2022

Co-Authors (by relevance)

  • Ousji, Hamza
  • Belkassem, Bachir
  • Rhouma, Mohamed Ben
  • Pyl, Lincy
  • Lecompte, David
  • Dhouibi, Mohamed
  • Atoui, Oussama
OrganizationsLocationPeople

document

Numerical Modeling of Brittle Mineral Foam in a Sacrificial Cladding Under Blast Loading

  • Belkassem, Bachir
  • Atoui, Oussama
  • Pyl, Lincy
  • Aminou, Aldjabar
  • Lecompte, David
Abstract

Cellular materials, such as mineral foams, have proven to be excellent energy absorbents. They can be used as crushable core in sacrificial cladding (SC) for blast mitigation. In this study, the blast absorption capability of a brittle mineral foam-based SC is investigated through finite element modeling using the LS-DYNA software. The SC consisted of a thin aluminum plate clamped into a rigid steel frame. The blast load was generated by 25 g of TNT equivalent. The blast absorption capability of the considered SC was evaluated by comparing the maximum out-of-plane displacement of the center of the plate subjected to<br/>a blast load with and without the brittle mineral foam. The presence of the brittle mineral foam reduces the maximum out-of-plane displacement of the center of the plate at least by a factor two.The brittle mineral foam is modeled both in solid elements and smoothed-particle hydrodynamics (SPH) with Fu Chang’s constitutive material law based exclusively on the results of quasi-static compression tests of the foam and a phenomenological relation between stress and strain rate. The numerical model with SPH predicts the maximum displacement of the center of the aluminum plate obtained experimentally with an average relative error of 5%.<br/>

Topics
  • impedance spectroscopy
  • mineral
  • aluminium
  • steel
  • compression test
  • laser sintering