People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Cojocaru, Costel Sorin
École Polytechnique
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (23/23 displayed)
- 2019Anisotropy of Assemblies of Densely Packed Co-Alloy Nanoparticles Embedded in Carbon Nanotubescitations
- 2016Optical Scale Polarimetric Device for Nanotube Forest Measurement: An Opportunity to Anticipate Bistatic Polarimetric SAR Images of Tree Trunk Forests at P-Bandcitations
- 2016Optical Scale Polarimetric Device for Nanotube Forest Measurement: An Opportunity to Anticipate Bistatic Polarimetric SAR Images of Tree Trunk Forests at P-Bandcitations
- 2014Nanosecond-laser-induced graphitization and amorphization of thin nano-crystalline graphite films
- 2012Different mechanisms of graphene wall nucleation on Fe and Ni particles
- 2012Current Saturation in Field Emission from H-Passivated Si Nanowirescitations
- 2011Vertically oriented nickel nanorod/carbon nanofiber core/shell structures synthesized by plasma-enhanced chemical vapor depositioncitations
- 2011Iron catalysts for the growth of carbon nanofibers: Fe, Fe3C or both?citations
- 2011Iron catalysts for the growth of carbon nanofibers : Fe, Fe_{3}C$ or both?
- 2011High-quality Single-walled carbon nanotubes synthesis by hot filament CVD on Ru nanoparticule catalystcitations
- 2011Synthesis of few-layered graphene by ion implantation of carbon in nickel thin filmscitations
- 2011Laterally organized carbon nanotube arrays based on hot-filament chemical vapor deposition
- 2010Iron catalyst for the growth of carbon nanofibers: Fe, Fe3C or both?citations
- 2010Nickel catalyst faceting in plasma-enhanced direct current chemical vapor deposition of carbon nanofibers
- 2009Conductance of disordered semiconducting nanowires and carbon nanotubes: a chain of quantum dotscitations
- 2008Growth of vertically aligned arrays of carbon nanotubes for high field emissioncitations
- 2008Localized CVD growth of oriented and individual carbon nanotubes from nanoscaled dots prepared by lithographic sequencescitations
- 2008Density control of electrodeposited Ni nanoparticles/nanowires inside porous anodic alumina templates by an exponential anodization voltage decreasecitations
- 2007Aligned carbon nanotubes catalytically grown on iron-based nanoparticles obtained by laser-induced CVDcitations
- 2006On the role of activation mode in the plasma- and hot filaments-enhanced catalytic chemical vapour deposition of vertically aligned carbon nanotubescitations
- 2006Synthesis of multi-walled carbon nanotubes by combining hot-wire and dc plasma-enhanced chemical vapor depositioncitations
- 2006Study of electron field emission from arrays of multi-walled carbon nanotubes synthesized by hot-wire dc plasma-enhanced chemical vapor depositioncitations
- 2003Ni and Ni/Pt filling inside multiwalled carbon nanotubescitations
Places of action
Organizations | Location | People |
---|
article
Conductance of disordered semiconducting nanowires and carbon nanotubes: a chain of quantum dots
Abstract
International audience ; A comparative study of the low temperature conductivity of an ensemble of multiwall carbon nanotubes and semiconductor nanowires is presented. The quasi one-dimensional samples are made in nanoporous templates by electrodeposition and CVD growth. Three different structures are studied in parallel: multiwall carbon nanotubes, tellurium nanowires, and silicon nanowires. It is shown that the Coulomb blockade regime dominates the electronic transport below 50 K, together with weak and strong localization effects. In the Coulomb blockade regime, a scaling law of the conductance measured as a func- tion of the temperature and the voltage is systematically observed. This allows a single scaling parameter α to be defined. This parameter accounts for the specific realization of the "disorder", and plays the role of a fingerprint for each sample. Correlations between α and the conductance measured as a function of temperature and voltage, as a function of the perpendicular magnetic field, and as a function of the temperature and voltage in the localized regime below 1 K have been performed. Three universal laws are reported. They relate the coefficient α (1) to the normalized Coulomb blockade conductance GT (α), (2) to the phase coherence length lφ (α), and (3) to the activation energy Ea(α). These observations suggest a description of the wires and tubes in terms of a chain of quantum dots; the wires and tubes break into a series of islands. The quantum dots are defined by conducting islands with a typical length on the order of the phase coherence length separated by poorly conducting regions (low density of carriers or potential barriers due to defects). A corresponding model is developed in order to put the three universal laws in a common frame.