People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Michel, Patrick
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2023Rubble-pile structural and dynamical evolution under YORP and the pathway to a binary system
- 2023Rubble-pile structural and dynamical evolution under YORP and the pathway to a binary system
- 2021Creep stability of the DART/Hera mission target 65803 Didymos: II. The role of cohesioncitations
- 2020Validating N-body code CHRONO for granular DEM simulations in reduced-gravity environmentscitations
- 2020Simulations of high-velocity impacts on metal in preparation for the Psyche missioncitations
- 2018Rotational Failure of Rubble-pile Bodies: Influences of Shear and Cohesive Strengthscitations
- 2014Low-speed impact simulations into regolith in support of asteroid sampling mechanism design I: Comparison with 1-g experimentscitations
- 2013Numerically simulating impact disruptions of cohesive glass bead agglomerates using the soft-sphere discrete element methodcitations
- 2012Numerical Simulations of Landslides Calibrated Against Laboratory Experiments for Application to Asteroid Surface Processes
- 2012Numerical Simulations of Low-Speed Impact Disruption of Cohesive Aggregates Using the Soft-Sphere Discrete Element Method and Comparison with Experiments on Sintered-Glass-Bead Agglomerates
- 2011Simulations of low-speed impacts into cohesive aggregates and comparison with experiments on sintered glass bead agglomerates
- 2011Radar Tomography of Asteroids ASSERT / Marco Polo-R
- 2010High- and low-velocity impact experiments on porous sintered glass bead targets of different compressive strengths: Outcome sensitivity and scalingcitations
- 2007Rotational Disruption of Gravitational Aggregates with Cohesive Strength
Places of action
Organizations | Location | People |
---|
document
Rubble-pile structural and dynamical evolution under YORP and the pathway to a binary system
Abstract
Radar observations indicate that about 16% of near-Earth asteroids may be binary systems with likely fast-spinning spheroidal primaries [1]. The formation mechanism of such systems remains uncertain, although it may be linked to rotation-driven structural reconfiguration if these asteroids are rubble piles [2]. On 26 September, 2022, the NASA Double Asteroid Redirection Test (DART) mission successfully demonstrated the use of kinetic impact for planetary defense by colliding with Dimorphos, the moon of the Didymos binary system [3], altering its orbit around the primary Didymos [4, 5]. The DRACO camera onboard the DART spacecraft has provided the first close-up images of the asteroids [3], revealing their physical characteristics that offer valuable insight into the formation and evolution of such binary systems. In this study, assuming that the primary Didymos is a rubble pile, we employ soft-sphere discrete element modeling to investigate the structural and rotational evolution of Didymos, which allows us to constrain the binary formation scenario. First, by simulating the structural evolution of Didymos given YORP-induced rotational acceleration as a spin-up mechanism, we derived a range of material and structural properties necessary for maintaining its structural stability at the current spin period of 2.26 hr. Our results indicate that Didymos does not require cohesive strength if its constituent granular material has an angle of friction ≥ ~40 deg and its bulk density is ≥ ~2.7 g/cc. Considering a typical friction angle range of dry granular material, e.g., 29–40 deg, a cohesive strength of ~19–33 Pa would be needed for the reported nominal bulk density, i.e., 2.4 g/cc [3]. Then, we tested the structural and dynamical evolution of the derived Didymos models under various conditions, including rotational acceleration and small-scale impact bombardment. Our findings suggest that moon formation via surface mass shedding is more plausible when the body has a relatively high friction angle or a denser interior. Finally, we characterized the morphology and dynamics of the Didymos model and resulting particle systems (if produced) and compared our findings with the geophysical characteristics revealed by the DRACO images. Based on these results, we discuss the possible formation mechanisms for Dimorphos along with the implications for the upcoming Hera mission.References: [1] Margot et al., Science 296, 1445–1448 (2002). [2] Walsh & Jacobson, in Asteroids IV (2015). [3] Daly et al., Nature, in press (2023). [4] Thomas et al., Nature, in press (2023). [5] Cheng et al., Nature, in press (2023)....