People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
De Goey, Philip
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (25/25 displayed)
- 2024Iron powder particles as a clean and sustainable carriercitations
- 2024Cyclic reduction of combusted iron powdercitations
- 2024Towards an efficient metal energy carrier for zero–emission heating and power:Iron powder combustioncitations
- 2024Towards an efficient metal energy carrier for zero–emission heating and powercitations
- 2024The Heat Flux Method for hybrid iron–methane–air flamescitations
- 2024Thermoacoustic stability analysis and robust design of burner-deck-anchored flames using flame transfer function composition
- 2024Cyclic reduction of combusted iron powder:A study on the material properties and conversion reaction in the iron fuel cyclecitations
- 2024Iron powder particles as a clean and sustainable carrier:Investigating their impact on thermal outputcitations
- 2024Experimental and Statistical Analysis of Iron Powder for Green Heat Productioncitations
- 2024A numerical study of emission control strategies in an iron powder burnercitations
- 2023Particle Equilibrium Composition model for iron dust combustioncitations
- 2023Experimental Research On Iron Combustion At Eindhoven University of Technology
- 2023Experimental Research On Iron Combustion At Eindhoven University of Technology
- 2023The Heat Flux Method adapted for hybrid iron-methane-air flames
- 2023Characterising Iron Powder Combustion using an Inverted Bunsen Flame
- 2023Characterising Iron Powder Combustion using an Inverted Bunsen Flame
- 2023Burning Velocity Measurements for Flat Hybrid Iron-Methane-Air Flames
- 2023Size evolution during laser-ignited single iron particle combustioncitations
- 2022Phase transformations and microstructure evolution during combustion of iron powdercitations
- 2022Laminar burning velocity of hybrid methane-iron-air flames
- 2021Burn time and combustion regime of laser-ignited single iron particlecitations
- 2014On hydrogen addition effects in turbulent combustion using the Flamelet Generated Manifold technique
- 2011Gasoline port fuel injection on a heavy-duty diesel engine
- 2009Visualization of biomass pyrolysis and temperature imaging in a heated-grid reactorcitations
- 2008Reverse combustion : kinetically controlled and mass transfer controlled front structurescitations
Places of action
Organizations | Location | People |
---|
conferencepaper
Laminar burning velocity of hybrid methane-iron-air flames
Abstract
As widely acknowledged, it is mandatory to decarbonize our energy system. A low-cost opportunity to achieve this is with high energy density metal carriers. Renewable energy can be used to reduce metal oxides to metal. This metal can be stored under ambient conditions in the form of a powder and be combusted (=oxidised) whenever energy is needed, providing fully renewable heat. In this work, micron sized iron powder is considered as metal energy carrier and the effect ofiron powder on the adiabatic burning velocity of methane-air flames is investigated for different mixtures. To do so the Heat Flux (HF) method is used to stabilize hybrid methane-iron-air flames on a perforated plate on which is heated at the rim. Thermocouples are connected at different distances from the center of the plate. This way, the change in adiabatic burning velocity of flames can be found by measuring the temperature gradient over the burner plate for different mixtures and gas velocities. Via a loadcell connected to a dispersion system, the iron powder mass flow is tracked. By combining the data from the loadcell with the thermocouples data the effect different powder loading for various gas mixtures on the burning velocity can be extracted. The challenges here are to supply the flame with a continuous and accurate mass flow of iron particles while also taking into account the dynamics of the created aerosol.<br/>