People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Chaudhuri, Somsubhro
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (27/27 displayed)
- 2024A hybrid probabilistic-deterministic framework for prediction of characteristic size of corrosion pits in low-carbon steel following long-term seawater exposurecitations
- 2024Experimental evaluation of the short and long fatigue crack growth rate of S355 structural steel offshore monopile weldments in air and synthetic seawatercitations
- 2024Fatigue damage detection using Lock-In Thermography
- 2023Thermometric investigation of fatigue crack initiation from corrosion pits in structural steel used in offshore wind turbines
- 2023Quantitative analysis of the correlation between geometric parameters of pits and stress concentration factors for a plate subject to uniaxial tensile stresscitations
- 2023Investigation of the effect of pitting corrosion on the fatigue strength degradation of structural steel using a short crack modelcitations
- 2023Investigation of the effect of pitting corrosion on the fatigue strength degradation of structural steel using a short crack modelcitations
- 2023Smart S-N curve for fatigue lifetime predictions of offshore wind turbine support structures affected by corrosion
- 2023Smart S-N curve for fatigue lifetime predictions of offshore wind turbine support structures affected by corrosion
- 2023Evaluation of the corrosion pit growth rate in structural steel S355 by phase-field modelling
- 2023Evaluation of the corrosion pit growth rate in structural steel S355 by phase-field modelling
- 2023A numerical study on tensile stress concentration in semi-ellipsoidal corrosion pitscitations
- 2022Numerical study on the effect of pitting corrosion on the fatigue strength degradation of offshore wind turbine substructures using a short crack model
- 2022Numerical study on the effect of pitting corrosion on the fatigue strength degradation of offshore wind turbine substructures using a short crack model
- 2022A numerical investigation on the pitting corrosion in offshore wind turbine substructures
- 2022Calibration and validation of extended back-face strain compliance for a wide range of crack lengths in SENB-4P specimenscitations
- 2022Calibration and validation of extended back-face strain compliance for a wide range of crack lengths in SENB-4P specimenscitations
- 2022A numerical investigation on the pitting corrosion in offshore wind turbine substructures
- 2022Fatigue strength degradation of structural steel in sea environment due to pitting corrosion
- 2022Pitting corrosion and its transition to crack in offshore wind turbine supporting structures
- 2022Pitting Corrosion and Its Transition to Crack in Offshore Wind Turbine Supporting Structures
- 2022Test methods for corrosion-fatigue of offshore structures
- 2022Test methods for corrosion-fatigue of offshore structures
- 2021Data rich imaging approaches assessing fatigue crack initiation and early propagation in a DS superalloy at room temperaturecitations
- 2020Magnetic properties of silicon steel after plastic deformationcitations
- 2019The development of high-resolution crack monitoring methods to investigate the effect of the local weld toe geometry on fatigue crack initiation life
- 2019High-resolution 3D weld toe stress analysis and ACPD method for weld toe fatigue crack initiationcitations
Places of action
Organizations | Location | People |
---|
document
Evaluation of the corrosion pit growth rate in structural steel S355 by phase-field modelling
Abstract
Steel support structures for offshore wind turbines operate in a harsh chloride-containing marine environment, which can lead to surface degradation due to the formation of corrosion pits. Depending on, amongst others, the applied potential, the corrosion kinetics can either be in activation-, migration- or diffusion-controlled regime. The main aim of this work, which is part of the MAXWind project, is to identify the potential values corresponding to each of these regimes for structural steel S355 in an environment representative of the North Sea. Hereto, the PRISMS-PF open-source phase-field modelling framework is used. Potentiodynamic polarization tests are performed for the electrochemical characterization of this material in artificial seawater. The corrosion potential and current density values obtained are -693 mV vs. Ag/AgCl and 0.005813 mA/〖cm〗^2, respectively. Open circuit potential (OCP) measurements revealed a similar result for the corrosion potential, i.e. -670 mV vs. Ag/AgCl. Besides, the effect of the applied potential on geometrical parameters (pit width and depth) and electrochemical parameters associated with the pit growth rate is studied. For an applied potential of -600 mV (vs. Ag/AgCl) and lower, the corrosion process stays in the activation-controlled regime throughout the simulation time (1000s) and a pit will thus not change in size. Applied potentials of -550 to -400 mV (vs. Ag/AgCl) take the system to the migration-controlled regime, and above -350 mV (vs. Ag/AgCl) the system is in the diffusion-controlled regime. The higher the applied potential (towards zero), the more pitting corrosion is accelerated until it reaches a threshold where any additional increase in applied potential will not further change the pit growth rate. Numerical results are validated with experimental observations of pit depth and width on corroded specimens under temperature-controlled conditions throughout a potentiostat test. Simulating the autonomous growth of a pit for long-term exposure using the phase-field technique is computationally expensive. Based on the preliminary results of this work, it can be assumed that the normal velocity of the pit surface will remain constant in the long term because the applied potential in the real application is lower than -600 mV (vs. Ag/AgCl), negligibly small being close to corrosion potential (no external source of current). A more simple model of pit growth can therefore be used for long-term exposure. The authors acknowledge the financial support of the Belgian Federal Government through its Energy Transition Fund.