People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Hühne, Christian
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (27/27 displayed)
- 2024Increased accuracy of service life prediction for fiber metal laminates by consideration of the manufacturing-induced residual stress statecitations
- 2024Bolt-bearing behavior of hybrid CFRP-steel laminates at low temperaturecitations
- 2024STRUCTURAL PART STIFFNESS TEST IN COMPARISON TO THE FE-PREDICTION. A TEST COMBINING CONTINUOUS STRUCTURE WITH COMPLEX INTERFACES
- 2024Equivalent plate formulation of Double-Double laminates for the gradient-based design optimization of composite structurescitations
- 2024Local Surface Toughening – A boltless crack stopping technology for aerospace structures
- 2024Validation of static residual strength analyses of fiber composite bonded joints
- 2023Steigerung der Robustheit von strukturellen Klebungen mittels Surface Toughening am Beispiel HAP
- 2023Anisotropic flexure hinges: Manufacturing and mechanical characterization forapplication in pressure-actuated morphing structures
- 2023THERMAL CONDUCTIVITY CHARACTERIZATION OF A CFRP SINGLE-LAP JOINT
- 2023Curvature Analysis of asymmetric Specimes for the residual stress quantification in fiber metal laminates
- 2023Comparison of Continuum Shell and Solid Element-Based Modeling Strategies for Mesoscale Progressive Damage Analysis of Fiber Compositescitations
- 2023Investigations on Guided Ultrasonic Wave Dispersion Behavior in Fiber Metal Laminates Using Finite Element Eigenvalue Analysiscitations
- 2023Anisotropic flexure hinges: Manufacturing and mechanical characterization for application in pressure-actuated morphing structurescitations
- 2023Gradient-based Design Optimization of Composite Structures using Double-Double Laminates
- 2023Aeroelastic Analysis of Actuated Adaptive Wingtips Based on Pressure-Actuated Cellular Structures
- 2023Effect of low temperature on mode I and mode II interlaminar fracture toughness of CFRP-steel hybrid laminatescitations
- 2022Polyetherimide-Reinforced Smart Inlays for Bondline Surveillance in Composites
- 2022In-situ quantification of manufacturing-induced strains in fiber metal laminates with strain gages
- 2022Applicability of Asymmetric Specimens for Residual Stress Evaluation in Fiber Metal Laminatescitations
- 2020Surface toughening - An industrial approach to increase the robustness of pure adhesive joints with film adhesivescitations
- 2019Decision Tree-based Machine Learning to Optimize the Laminate Stacking of Composite Cylinders for Maximum Buckling Load and Minimum Imperfection Sensitivity
- 2016Degradation analysis of fibre-metal laminates under service conditions to predict their durability
- 2016Experimental investigations on residual stresses during the fabrication of intrinsic CFRP-steel laminates
- 2013Effective lightweight design of a rocket interstage ring through mixed-integer optimization
- 2012Experimental identification of process parameters inducing warpage of autoclave-processed CFRP partscitations
- 2011A semi-analytical simulation strategy and its application to warpage of autoclave-processed CFRP partscitations
- 2005Robuster Entwurf beulgefährdeter, unversteifter Kreiszylinderschalen aus Faserverbundwerkstoff ; Robust Design of Unstiffened Cylindrical Shells made of Composite Material
Places of action
Organizations | Location | People |
---|
document
Gradient-based Design Optimization of Composite Structures using Double-Double Laminates
Abstract
The Double-Double (DD) family of composite laminates has been proven to be a very promising alternative for designers and manufactures in aerospace engineering. A DD laminate is characterized simply through a balanced building block, comprising four unidirectional layers with ply angles {phi, -psi, -phi, psi}. Assuming the homogenization due to the sufficient repetition of such a DD building block reveals continuous parameter for a laminate stacking, suitable for gradient-based numerical sensitivities. Hence, an optimization strategy is presented using the DD parameterization as design variables in order to derive an optimized thickness and stiffness distribution, which is easy to translate into a refined manufacturable design. Therefore, a gradient-based optimization process is introduced using the modular lightworks framework. The DD composite representation is implemented to a meta-model, based on panel units, where buckling and strength criteria are evaluated analytically. The finite-element-based solver B2000++ is used to provide internal panel load states. Gradients for the objective function as well as the constraints are determined with respect to the DD parameter using finite differences. The proposed method is applied to a least weight problem of a simple wing box, which is well known from literature. The newly implemented DD parameterization is compared to a laminate stacking derived from a lamination parameter-based optimization and a subsequent stacking sequence retrieval. The proposed optimization process provides an efficient option to obtain an optimal and feasible structural design within mono and multidisciplinary aircraft development.