People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Sennewald, Cornelia
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2023Anisotropic flexure hinges: Manufacturing and mechanical characterization forapplication in pressure-actuated morphing structures
- 2023Anisotropic flexure hinges: Manufacturing and mechanical characterization for application in pressure-actuated morphing structurescitations
- 2023Lightweight panels with high delamination resistance made of integrally woven truss-like fabric structures
- 2023Joining of composites with metals using graded metal fabric interfaces
- 2022Experimental and Numerical Analysis of the Deformation Behavior of Adaptive Fiber-Rubber Composites with Integrated Shape Memory Alloyscitations
- 2021Impaktsicherheit von Baukonstruktionen durch mineralisch gebundene Kompositecitations
- 2020Entwicklung von flächigen Metall-FKV-Übergangsstrukturen für den Multimaterialleichtbau
- 2013Metallgussverbundbauteil
- 2012Textile based metal sandwiches and metal-matrix-composites reinforced with 3D wire structures, Part 1
- 2012Textile based metal sandwiches and metal-matrix-composites reinforced with 3D wire structures, Part 2
Places of action
Organizations | Location | People |
---|
document
Textile based metal sandwiches and metal-matrix-composites reinforced with 3D wire structures, Part 2
Abstract
<p>A new kind of periodic cellular metal will be presented. These special three-dimensional cellular metals are built by wires with a modified textile weaving technique. The aim of this study (Part II) was to realize a well joined porous structure with the possibility to create a new kind of metal matrix composite (Mg matrix) via infiltration techniques. To join these special structures with its many intersections and nodes a procedural path had to be found. In thise study carbon spring steel was used because of its advantages like low cost, adjustable strength and the possibilities of brazing. The first results of this research will be presented in this work and a conclusion and an outline of future work will be given.</p>