People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Brandt, Lars
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2023Thermocouple based process optimization for laser assisted automated fiber placement of CF/LM-PAEKcitations
- 2023Integral quality assurance method for a CFRP aircraft fuselage skin: Gap and overlap measurement for thermoplastic AFPcitations
- 2022Upscaling of in-situ Automated Fiber Placement with LM-PAEK - From Panel to Fuselage
- 2022How to Produce a Thermoplastic Fuselage
- 2019COMPARISON OF HEAT SOURCES FOR AUTOMATED DRY FIBRE PLACEMENT: XENON FLASHLAMP VS. INFRARED HEATING
- 2017Robot-based implant resistance welding of carbon fiber reinforced thermoplastics
- 2017Automated layup of spherical GLARE components using cooperating robots
Places of action
Organizations | Location | People |
---|
document
Upscaling of in-situ Automated Fiber Placement with LM-PAEK - From Panel to Fuselage
Abstract
The application of thermoplastic CFRPs in large aerospace components enables a modern and differential approach to Aircraft manufacturing. Most importantly the opportunity of dust-free joining of components by means of thermoplastic welding technologies allow subassemblies to be pre-equipped with system and cabin elements that are then subsequently joined. The Institute for Structures and Design of the German Aerospace Center (DLR) has been working on in-situ Automated Fiber Placement (AFP) with different thermoplastic matrix materials with the goal to develop a suitable single stage manufacturing process for thermoplastic CFRPs. Different aspects of the scale-up were investigated including the overall ply design, manufacturability of complex areas of a fuselage, first ply adhesion, and the overall laminate quality with regard to weldability. The manufacturing of a test shell with 4 m diameter is presented in this work. It identified key areas of the process that require further refinement in order to assure manufacturability and weldability of AFP-produced parts. Using the results, a holistic approach to the manufacturing process is proposed for the direct manufacturing of large-scale components made with the in-situ AFP Process.