People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ratia-Hanby, Vilma L.
VTT Technical Research Centre of Finland
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2024Integrating double-labeling HCR-FISH into a multidisciplinary pipeline for biofouling assessment on austenitic stainless steel in brackish seawater circuitcitations
- 2024The evolution of subsurface deformation and tribological degradation of a multiphase Fe-based hardfacing induced by sliding contact
- 2024Backgrounds for Studying Impact of Different Water Environments on Welded Steels for Low and Intermediate-Level Waste Repositories in Finland
- 2024The effect of alloying and surface roughness on biofouling of stainless steels in Baltic Sea brackish seawater
- 2023Penetration of corrosive species into copper exposed to simulated O2-free groundwater by time-of-flight secondary ion mass spectrometry (ToF-SIMS)citations
- 2023Characterization of surface films that develop on pre-oxidized copper in anoxic simulated groundwater with sulphidecitations
- 2023Applied DNA HCR-FISH for Biofilm Distribution Imaging on Stainless Steel in Brackish Seawater
- 2021Microstructural characterisation of subsurface deformation and the degradation of Stellite 6 induced by self-mated sliding contact in a simulated PWR environmentcitations
- 2021Corrosion of copper in sulphide containing environment: the role and properties of sulphide films – Annual report 2020
- 2021Corrosion-induced microstructure degradation of copper in sulfide-containing simulated anoxic groundwater studied by synchrotron high-energy X-ray diffraction and ab-initio density functional theory calculationcitations
- 2019Research methods for the evaluation of the relevance of application oriented laboratory wear tests
- 2015Behavior of martensitic wear resistant steels in abrasion and impact wear testing conditions
- 2015The effect of impact conditions on the wear and deformation behavior of wear resistant steelscitations
Places of action
Organizations | Location | People |
---|
conferencepaper
Applied DNA HCR-FISH for Biofilm Distribution Imaging on Stainless Steel in Brackish Seawater
Abstract
Microbially-induced corrosion or biocorrosion driven by microorganisms in brackish seawater has been associated with the destruction of the passivation layer on stainless steel. This has been especially linked to the metabolisms of sulphate-reducing bacteria (SRB). In recent years, various methods have been employed to investigate the phenomena, including open circuit potential (OCP) and anodic cyclic polarization methods, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) analyses, as well molecular biological methods such as enumeration by quantitative polymerase chain reaction (qPCR) and characterization of biofilm microbial communities by amplicon sequencing.<br/><br/>Hybridization chain reaction fluorescence in situ hybridization (HCR-FISH) is a bio-imaging technique that provides unique microbial distribution maps of multispecies biofilms on the steel surface, supporting current methods employed for a biocorrosion study. The technique uses DNA nucleotide probes labelled with fluorescence dyes, binding to the 16S ribosomal RNA (16S rRNA) to visualize simultaneously targeted multispecies microbes at the single-cell level. HCR-FISH protocol introduced by Yamaguchi et al. (2015a and 2015b) has been further adapted for bio-imaging marine sediment and seawater in recent years due to its simplicity, and high efficiency. We modified the standard HCR-FISH protocol to be applicable directly on stainless steel surfaces to study the biocorrosion of austenitic stainless steel EN 1.4404 that had been exposed to natural brackish seawater circulated in a lab-scale loop. HCR-FISH enabled simultaneous visualization of two microbial groups forming biofilm (bacteria and archaea or, bacteria and SRB). In addition, HCR-FISH was counterstained with 4,6-diamidino-2-phenylindole (DAPI), a cell-permeable fluorescent stain binding all double-stranded DNA.<br/><br/>The modified HCR-FISH protocol produced promising results for the studied environmental mix species biofilms on stainless steel but requires further method development. The targeted cell detection was clear, specified, and intensive, resulting in high-contrast epifluorescence microscopy images which were applicable and supportive for biocorrosion investigation.