Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kiiskinen, Harri

  • Google
  • 10
  • 26
  • 444

VTT Technical Research Centre of Finland

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (10/10 displayed)

  • 2023Formable cellulose-based webs enabled by foam forming technologycitations
  • 2023High consistency foam in pilot scalecitations
  • 2016Porous structure of fibre networks formed by a foaming process: a comparative study of different characterization techniques14citations
  • 2012Nano-fibrillated cellulose vs bacterial cellulosecitations
  • 2012High performance cellulose nanocomposites215citations
  • 2012High performance cellulose nanocomposites:Comparing the reinforcing ability of bacterial cellulose and nanofibrillated cellulose215citations
  • 2012Nano-fibrillated cellulose vs bacterial cellulose:Reinforcing ability of nanocellulose obtained topdown or bottom-upcitations
  • 2009Some insight on paper structure and properties with different drying conditionscitations
  • 2003On the mobility of flowing papermaking suspensions and its relationship to formationcitations
  • 2002On the mobility of flowing papermaking suspensions and its relationship to formationcitations

Places of action

Chart of shared publication
Hjelt, T.
1 / 4 shared
Lappalainen, Timo
1 / 7 shared
Jetsu, Petri
1 / 8 shared
Salminen, Kristian
1 / 6 shared
Kouko, Jarmo
1 / 14 shared
Prakash, Baranivignesh
1 / 3 shared
Pääkkönen, Elina
1 / 10 shared
Siilasto, Roope
1 / 1 shared
Ketoja, Jukka A.
1 / 17 shared
Al-Qararah, Ahmad M.
1 / 2 shared
Hjelt, Tuomo
1 / 6 shared
Ekman, Axel
1 / 1 shared
Timonen, Jussi
1 / 3 shared
Bismarck, Alexander
4 / 142 shared
Tammelin, Tekla
4 / 26 shared
Samela, Juha
4 / 4 shared
Lee, Koon-Yang
2 / 23 shared
Schlufter, Kerstin
2 / 2 shared
Schulfter, Kerstin
2 / 2 shared
Lee, Koon Yang
2 / 6 shared
Myllys, M.
1 / 1 shared
Keränen, Janne T.
1 / 7 shared
Kerekes, R.
1 / 1 shared
Martinez, D. M.
2 / 3 shared
Ahlman, A.-K.
2 / 2 shared
Kerekes, R. J.
1 / 1 shared
Chart of publication period
2023
2016
2012
2009
2003
2002

Co-Authors (by relevance)

  • Hjelt, T.
  • Lappalainen, Timo
  • Jetsu, Petri
  • Salminen, Kristian
  • Kouko, Jarmo
  • Prakash, Baranivignesh
  • Pääkkönen, Elina
  • Siilasto, Roope
  • Ketoja, Jukka A.
  • Al-Qararah, Ahmad M.
  • Hjelt, Tuomo
  • Ekman, Axel
  • Timonen, Jussi
  • Bismarck, Alexander
  • Tammelin, Tekla
  • Samela, Juha
  • Lee, Koon-Yang
  • Schlufter, Kerstin
  • Schulfter, Kerstin
  • Lee, Koon Yang
  • Myllys, M.
  • Keränen, Janne T.
  • Kerekes, R.
  • Martinez, D. M.
  • Ahlman, A.-K.
  • Kerekes, R. J.
OrganizationsLocationPeople

document

High consistency foam in pilot scale

  • Prakash, Baranivignesh
  • Pääkkönen, Elina
  • Kiiskinen, Harri
  • Siilasto, Roope
Abstract

Resource-efficientprocessingisoneofthepathwaystomanufacturingsustainablefoam-formed products. Replacingthecurrentfoaming methodswithHigh-ConsistencyFoam(HCF)canreduce resourceconsumptionintermsof water, andequipmentfootprint. Therefore,wecarriedoutpilot-scale HCF trials to address requirements on the process equipment and parameters to generate low-densityporousstructures.ThepilotscaleHCFunitcomprisedof unitoperationsinthefollowing order: (a) 200 L mixing tankwith pitched blade turbines, (b) centrifugal pump with an air-removal system, (c) Headbox with 5 mm and 8 mm rectangular openings and (d) pilot machine with 300 mmand 700 mmweb, impingementand through-airdriers.A mixture of softwood(SW)and hardwood(HW),from 8% to 14%consistencies,were used. 4 to 6 g/L of non-ionic Simulsol 10 was used as a surfactant.Wefoundthat a dualimpellersystem cangeneratehomogeneousHCFwith14%consistency(50%SW+50%HW)resultingin the lowestwetfoamdensityof160g/L. Besides,higher mixing power wasrequiredfor pure SW foam compared toHW foam. The headbox with an 8 mmopening and640mmwidthworkedbetter,whereasthe 5mmopeningencountered frequent blockageprobably due to the too-low flow rates. A minimum flow rate of 0.2 L/sec was required to avoid backpressureand to distribute the foam inside the headbox evenly. Highly porous low-densitysamplesin the density of 20-80 kg/m3were examined using x-ray tomography to detect the structures’flowchannels/weakpoints. HWwaseasierto foamwithoutflocks,butthestructurewasbrittle whereas themixture of HW andSW enhanced the structure. In summary, an improved understanding ofthe operating parameters of different unit operations (mixer, pump, head box,and pilot machine) to form low-density webs with HCF was achieved.

Topics
  • porous
  • density
  • tomography
  • size-exclusion chromatography
  • surfactant