People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Macdonald, Kevin
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2020Exotic effects in nanomechanical metamaterials
- 2018Optical bistability in shape-memory nanowire metamaterial arraycitations
- 2017Optical plasmonic response of niobium around the superconducting transition temperature
- 2017Merging metamaterial and optical fiber technologies
- 2017Fibre-coupled photonic metadevices
- 2014Femtosecond multi-level phase switching in chalcogenide thin films for all-optical data and image processing
- 2013Chalcogenide-based phase-change metamaterials for all-optical, high-contrast switching in a fraction of a wavelength
- 2010Switching metamaterials with electronic signals and electron-beam excitations
- 2010Metamaterial electro-optic switch of nanoscale thicknesscitations
- 2010Chalcogenide plasmonic metamaterial switches
- 2010Active chalcogenide glass photonics and electro-optics for the mid-infrared
- 2009Chalcogenide glass metamaterial optical switch
Places of action
Organizations | Location | People |
---|
document
Exotic effects in nanomechanical metamaterials
Abstract
The nanomechanical metamaterials offer the possibilities of manipulating exotic electromagnetic properties on demand. Such metamaterial exhibit profound electro-optical, magneto-optical and acousto-optical switching and modulation, optical nonlinearity for modulating light with light, asymmetric transmission, and tunable chirality.<br/><br/>The electromagnetic properties of nanomechanical metamaterial structure strongly depend on the spatial arrangement of its building blocks. By constructing metamaterials on elastically deformable scaffolds we can dynamically control the nanoscale spacing among constituent elements across the entire metamaterial array with external stimuli. Based on this approach, we use electrostatic, Lorentz, near field optical forces and sound to drive high-contrast, high-speed active tuning, modulation and switching of photonic metamaterial properties and to deliver exotic electromagnetic properties.<br/><br/>We also report a novel approach to the visualization of nanoscale movements of picometre scale Brownian and stimulation movements of the individual building blocks of these functional metamaterials.