Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ou, Jun-Yu

  • Google
  • 11
  • 33
  • 92

University of Southampton

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (11/11 displayed)

  • 2023Microwatt volatile optical bistability via nanomechanical nonlinearity7citations
  • 2020Exotic effects in nanomechanical metamaterialscitations
  • 2019Mechanochromic reconfigurable metasurfaces27citations
  • 2019Mechanochromic reconfigurable metasurfaces27citations
  • 2019Tuning MoS2 metamaterial with elastic straincitations
  • 2019Tuning MoS 2 metamaterial with elastic straincitations
  • 2018Optical properties of single crystal silver thin films on mica for high performance2citations
  • 2018Optical bistability in shape-memory nanowire metamaterial array29citations
  • 2017Optical plasmonic response of niobium around the superconducting transition temperaturecitations
  • 2016Low-loss single crystal silver thin films for nanoplasmonics and metamaterialscitations
  • 2015Single-crystal silver thin films for low-loss plasmonic metamaterialscitations

Places of action

Chart of shared publication
Papas, Dimitrios
2 / 2 shared
Plum, Eric
4 / 8 shared
Liu, Tongjun
1 / 1 shared
Zhang, Qiang
1 / 8 shared
Piccinotti, Davide
1 / 3 shared
Macdonald, Kevin
3 / 12 shared
Karvounis, Artemios
4 / 8 shared
Huang, Chung-Che
4 / 38 shared
Hewak, Daniel W.
2 / 80 shared
Zeimpekis, Ioannis
4 / 24 shared
Aspiotis, Nikolaos
4 / 18 shared
Hewak, Daniel
2 / 10 shared
Zheludev, Nikolay
1 / 1 shared
Zheludev, Nikolai
1 / 1 shared
Uchino, Takashi
1 / 5 shared
Koiwa, T.
3 / 3 shared
Fedotov, Vassili
1 / 1 shared
Takahara, Junichi
1 / 1 shared
Gholipour, Behrad
1 / 11 shared
Tsuruta, Masanori
1 / 1 shared
Nagasaki, Yusuke
1 / 1 shared
Soci, C.
1 / 10 shared
Chong, Y. D.
1 / 1 shared
Delfanazari, K.
1 / 4 shared
Adamo, G.
1 / 5 shared
Liao, C. Y.
1 / 6 shared
Savinov, Vassili
1 / 3 shared
Huang, C.
1 / 9 shared
Krishnamoorthy, H. N. S.
1 / 1 shared
Tsai, D. P.
1 / 1 shared
Kusmartsev, F. V.
1 / 1 shared
Uchino, T.
2 / 8 shared
Fedotov, V. A.
2 / 4 shared
Chart of publication period
2023
2020
2019
2018
2017
2016
2015

Co-Authors (by relevance)

  • Papas, Dimitrios
  • Plum, Eric
  • Liu, Tongjun
  • Zhang, Qiang
  • Piccinotti, Davide
  • Macdonald, Kevin
  • Karvounis, Artemios
  • Huang, Chung-Che
  • Hewak, Daniel W.
  • Zeimpekis, Ioannis
  • Aspiotis, Nikolaos
  • Hewak, Daniel
  • Zheludev, Nikolay
  • Zheludev, Nikolai
  • Uchino, Takashi
  • Koiwa, T.
  • Fedotov, Vassili
  • Takahara, Junichi
  • Gholipour, Behrad
  • Tsuruta, Masanori
  • Nagasaki, Yusuke
  • Soci, C.
  • Chong, Y. D.
  • Delfanazari, K.
  • Adamo, G.
  • Liao, C. Y.
  • Savinov, Vassili
  • Huang, C.
  • Krishnamoorthy, H. N. S.
  • Tsai, D. P.
  • Kusmartsev, F. V.
  • Uchino, T.
  • Fedotov, V. A.
OrganizationsLocationPeople

document

Exotic effects in nanomechanical metamaterials

  • Ou, Jun-Yu
  • Liu, Tongjun
  • Papas, Dimitrios
  • Zhang, Qiang
  • Plum, Eric
  • Piccinotti, Davide
  • Macdonald, Kevin
Abstract

The nanomechanical metamaterials offer the possibilities of manipulating exotic electromagnetic properties on demand. Such metamaterial exhibit profound electro-optical, magneto-optical and acousto-optical switching and modulation, optical nonlinearity for modulating light with light, asymmetric transmission, and tunable chirality.<br/><br/>The electromagnetic properties of nanomechanical metamaterial structure strongly depend on the spatial arrangement of its building blocks. By constructing metamaterials on elastically deformable scaffolds we can dynamically control the nanoscale spacing among constituent elements across the entire metamaterial array with external stimuli. Based on this approach, we use electrostatic, Lorentz, near field optical forces and sound to drive high-contrast, high-speed active tuning, modulation and switching of photonic metamaterial properties and to deliver exotic electromagnetic properties.<br/><br/>We also report a novel approach to the visualization of nanoscale movements of picometre scale Brownian and stimulation movements of the individual building blocks of these functional metamaterials.

Topics
  • metamaterial