Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Papas, Dimitrios

  • Google
  • 2
  • 6
  • 7

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2023Microwatt volatile optical bistability via nanomechanical nonlinearity7citations
  • 2020Exotic effects in nanomechanical metamaterialscitations

Places of action

Chart of shared publication
Ou, Jun-Yu
2 / 11 shared
Plum, Eric
2 / 8 shared
Liu, Tongjun
1 / 1 shared
Zhang, Qiang
1 / 8 shared
Piccinotti, Davide
1 / 3 shared
Macdonald, Kevin
1 / 12 shared
Chart of publication period
2023
2020

Co-Authors (by relevance)

  • Ou, Jun-Yu
  • Plum, Eric
  • Liu, Tongjun
  • Zhang, Qiang
  • Piccinotti, Davide
  • Macdonald, Kevin
OrganizationsLocationPeople

document

Exotic effects in nanomechanical metamaterials

  • Ou, Jun-Yu
  • Liu, Tongjun
  • Papas, Dimitrios
  • Zhang, Qiang
  • Plum, Eric
  • Piccinotti, Davide
  • Macdonald, Kevin
Abstract

The nanomechanical metamaterials offer the possibilities of manipulating exotic electromagnetic properties on demand. Such metamaterial exhibit profound electro-optical, magneto-optical and acousto-optical switching and modulation, optical nonlinearity for modulating light with light, asymmetric transmission, and tunable chirality.<br/><br/>The electromagnetic properties of nanomechanical metamaterial structure strongly depend on the spatial arrangement of its building blocks. By constructing metamaterials on elastically deformable scaffolds we can dynamically control the nanoscale spacing among constituent elements across the entire metamaterial array with external stimuli. Based on this approach, we use electrostatic, Lorentz, near field optical forces and sound to drive high-contrast, high-speed active tuning, modulation and switching of photonic metamaterial properties and to deliver exotic electromagnetic properties.<br/><br/>We also report a novel approach to the visualization of nanoscale movements of picometre scale Brownian and stimulation movements of the individual building blocks of these functional metamaterials.

Topics
  • metamaterial