People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Waele, Wim De
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (30/30 displayed)
- 2024Neural network based fatigue lifetime prediction of metals subjected to block loadingcitations
- 2023Stress intensity factor calculation for short cracks initiating from a semi-ellipsoidal pit
- 2023Quantitative analysis of the correlation between geometric parameters of pits and stress concentration factors for a plate subject to uniaxial tensile stresscitations
- 2023Investigation of the effect of pitting corrosion on the fatigue strength degradation of structural steel using a short crack modelcitations
- 2023Smart S-N curve for fatigue lifetime predictions of offshore wind turbine support structures affected by corrosion
- 2023Evaluation of the corrosion pit growth rate in structural steel S355 by phase-field modelling
- 2023Durability of an adhesively bonded joint between steel ship hull and sandwich superstructure pre-exposed to saline environment
- 2022Numerical study on the effect of pitting corrosion on the fatigue strength degradation of offshore wind turbine substructures using a short crack model
- 2022A numerical investigation on the pitting corrosion in offshore wind turbine substructures
- 2022Calibration and validation of extended back-face strain compliance for a wide range of crack lengths in SENB-4P specimenscitations
- 2022Effects of fixture configurations and weld strength mismatch on J-integral calculation procedure for SE(B) specimenscitations
- 2022Development and evaluation of the ultrasonic welding process for copper-aluminium dissimilar weldingcitations
- 2022Fatigue strength degradation of structural steel in sea environment due to pitting corrosion
- 2022Pitting corrosion and its transition to crack in offshore wind turbine supporting structures
- 2022Pitting Corrosion and Its Transition to Crack in Offshore Wind Turbine Supporting Structures
- 2022Test methods for corrosion-fatigue of offshore structures
- 2021Experimental and numerical study of a piezoelectric diaphragm, a smart sensor for electromechanical impedance-based structural health monitoring
- 2021Electrical admittance of a circular piezoelectric transducer and chargeless deformation effectcitations
- 2021An interdisciplinary framework to predict premature roller element bearing failures in wind turbine gearboxescitations
- 2021Fully-coupled continuum damage model for simulation of plasticity dominated hydrogen embrittlement mechanismscitations
- 2020Calibrating a ductile damage model for two pipeline steels : method and challengescitations
- 2020Evaluation of fatigue crack propagation in steel ESET specimens subjected to variable load spectracitations
- 2020Fatigue crack growth model incorporating surface waviness for Wire+Arc additively manufactured componentscitations
- 2020A comprehensive study on the microstructure and mechanical properties of arc girth welded joints of spiral welded high strength API X70 steel pipecitations
- 2019Enabling qualification of hybrid structures for lightweight and safe maritime transport
- 2019Fatigue crack propagation in HSLA steel specimens subjected to unordered and ordered load spectra
- 2019Crack tip constraint analysis in welded joints with pronounced strength and toughness heterogeneitycitations
- 2019Weldability of high-strength aluminium alloy EN AW-7475-T761 sheets for aerospace applications, using refill friction stir spot weldingcitations
- 2019Assessment of ultra-high cycle fatigue behavior of EN-GJL-250 cast iron using ultrasonic fatigue testing machine
- 2017Metallographic evaluation of the weldability of high strength aluminium alloys using friction spot welding
Places of action
Organizations | Location | People |
---|
document
Stress intensity factor calculation for short cracks initiating from a semi-ellipsoidal pit
Abstract
Offshore wind turbine support structures are exposed to maritime conditions, which can lead to corrosion fatigue. This work is part of the FATCOR project funded by the Belgian Energy Transition Fund, aiming to develop a qualitative and quantitative understanding of the mechanisms of corrosion fatigue in seawater. Localized corrosion generates a geometrical defect, raising the local stresses and reducing the fatigue life. The transition from pit growth to short fatigue crack propagation occurs at a critical pit size, which depends upon the microstructure, the applied stress level and the geometry of the pit. In linear elastic fracture mechanics, the stress intensity factor is used to describe the magnitude of the stress singularity near a crack tip caused by remote stresses and is useful for establishing a failure criterion. Literature lacks stress intensity factor solutions for cracks emanating from a three-dimensional semi-ellipsoidal pit. Fig. 1 (a) shows a schematic representation of a plate subjected to axial tensile stress with a semi-ellipsoidal pit at the center of the top surface. Two cracks in the shape of a circular arc are introduced at the pit mouth perpendicular to the loading direction (see Fig. 1 (b)). Finite element analysis is used to calculate the stress intensity factor (K₁) at the crack tip (see Fig. 2). The displacement extrapolation method is used to quantify the effect of different pit configurations and crack lengths on K₁. This method determines K₁ from the displacement field near the crack tip. A parametric study is performed on a range of relative geometrical parameter values (a/2c, b/c) and crack lengths (r/a). It is observed that changes in the pit geometry can drastically affect the stress gradient in the vicinity of the pit, which directly influences the magnitude of K₁. For example, (a/2c) equal to 1, 0.5 and 0.25, resulting in K₁ values of 74.4, 71.1 and 56.6 MPa√mm respectively, for a remote stress of 100 MPa. In future work, regression analysis will be performed to develop an equation to calculate the K₁ for a wide range of pit configurations and crack lengths.