Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Jeong, Hyeon-Ho

  • Google
  • 5
  • 14
  • 1

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2019Scalable active plasmonic nano-pixelscitations
  • 2018Hybrid nanocolloids by shadow growthcitations
  • 2017Corrosion protected 3D core-shell nanocolloidscitations
  • 2015 Encapsulated nanocolloids with programmable functionscitations
  • 2015Parallel fabrication of wafer-scale plasmonic metamaterials for nano-optics1citations

Places of action

Chart of shared publication
Baumberg, Jeremy J.
1 / 26 shared
Peng, Jialong
1 / 1 shared
Comier, Sean
1 / 1 shared
Lin, Qianqi
1 / 1 shared
Mark, Andrew G.
3 / 5 shared
Fischer, Peer
3 / 11 shared
Alarcon-Correa, Mariana
3 / 3 shared
Lee, Tung-Chun
3 / 3 shared
Lee, T. C.
1 / 1 shared
Mark, A. G.
1 / 1 shared
Gibbs, J. G.
1 / 1 shared
Fischer, P.
1 / 11 shared
Kim, I.
1 / 2 shared
Eslami, S.
1 / 2 shared
Chart of publication period
2019
2018
2017
2015

Co-Authors (by relevance)

  • Baumberg, Jeremy J.
  • Peng, Jialong
  • Comier, Sean
  • Lin, Qianqi
  • Mark, Andrew G.
  • Fischer, Peer
  • Alarcon-Correa, Mariana
  • Lee, Tung-Chun
  • Lee, T. C.
  • Mark, A. G.
  • Gibbs, J. G.
  • Fischer, P.
  • Kim, I.
  • Eslami, S.
OrganizationsLocationPeople

document

Corrosion protected 3D core-shell nanocolloids

  • Mark, Andrew G.
  • Jeong, Hyeon-Ho
  • Fischer, Peer
  • Alarcon-Correa, Mariana
  • Lee, Tung-Chun
Abstract

The electronic, optical, magnetic, and catalytic properties of nanoparticles depend on their geometry and material composition.1 Applications in liquids and in particular water are, however, limited for a number of promising nanomaterials, as they are prone to corrosion.2,3 Here, we present a method that can be used to protect complex hybrid 3D nanocolloids against corrosion.The method uses a nanoscale shadow growth technique, which we term ‘nano-glancing angle deposition (nanoGLAD)’.4 It can be used to grow three dimensional (3D) nanocolloids with some flexibility in the size, shape, and material composition of the nanoparticles. However, this scheme alone does not offer a means to prevent corrosion. Here, we show how the method can be adapted to grow 3D core-shell nanocolloids that are stable in various physiological environments.5We report a refined nanoGLAD scheme which, in conjunction with atomic layer deposition (ALD), can be used to protect multifunctional nanocolloids even in corrosive environments. The challenge is to ensure the complete encapsulation of the nanomaterial (core) by a defect-free shell layer. We discuss a promising metallic oxide shell layer that is chemically inert and that does not affect the colloidal stability. We demonstrate magnetic nanocolloids that without the protective layer corrode within hours in an acidic environment, but that are stable for weeks and in some cases even months when grown by the advanced nanoGLAD process. Entirely new applications are possible,6,7 including ones with Mg nanoparticles in aqueous solutions8 and for biomedical applications at low pH.91. Y. Xia, Y. Xiong, B. Lim and S. E. Skrabalak, Angew Chem Int Ed, 2009, 48, 60-103. 2. A.-H. Lu, E. L. Salabas and F. Schüth, Angew Chem Int Ed, 2007, 46, 1222-1244. 3. A. M. Goodman, Y. Cao, C. Urban, O. Neumann, C. Ayala-Orozco, M. W. Knight, A. Joshi, P. Nordlander and N. J. Halas, ACS Nano, 2014, 8, 3222-3231. 4. A. G. Mark, J. G. Gibbs, T.-C. Lee and P. Fischer, Nat Mater, 2013, 12, 802-807. 5. H.-H. Jeong, M. Alarcón-Correa, A.G. Mark, K. Son, T.-C. Lee, and P. Fischer, Corrosion protection of nanoparticles (In preparation). 6. H.-H. Jeong, A. G. Mark, M. Alarcon-Correa, I. Kim, P. Oswald, T.-C. Lee and P. Fischer, Nat Commun, 2016, 7, 11331. 7. H.-H. Jeong, A. G. Mark, T.-C. Lee, M. Alarcón-Correa, S. Eslami, T. Qiu, J. G. Gibbs and P. Fischer, Nano Lett, 2016, 16, 4887-4894. 8. H.-H. Jeong, A. G. Mark and P. Fischer, Chem Commun, 2016, 52, 12179-12182. 9. D. Walker, B. T. Käsdorf, H.-H. Jeong, O. Lieleg and P. Fischer, Sci Adv, 2015, 1, e1500501.

Topics
  • nanoparticle
  • impedance spectroscopy
  • corrosion
  • defect
  • atomic layer deposition