People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Rahman, Hamimah Abdul
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2022Influence of Electrophoretic Deposition (EPD) Voltage on SOFC Interconnect Morphologycitations
- 2021Linear Shrinkage, Strength and Porosity of Alumina-Based Ceramic Foam with Corn Starch as Pore Former
- 2021Fabrication of Silica (SiO2) Foam from Rice Husk Ash (RHA): Effects of Solid Loadings
- 2021Effect of Fabrication Method on Tensile Behaviour of Polysiloxane (POS) Filled Rice Husk Silica (RHA SiO2) Compositescitations
- 2021Perovskite-Type Oxide-Based Dual Composite Cathode for Solid Oxide Fuel Cells: A Short Review
- 2019Effect of SSC Loading on the Microstructural Stability SSC-SDCC Composite Cathode as New Potential SOFC
- 2018Eco-Friendly Flame-Retardant Additives for Polyurethane Foams: A Short Reviewcitations
- 2018FTIR and XRD Evaluation of Magnesium Doped Hydroxyapatite/Sodium Alginate Powder by Precipitation Methodcitations
- 2018Effect of Milling Process and Calcination Temperature on the Properties of BSCF-SDC Composite Cathodecitations
- 2018Morphological and Physical Behaviour on the Sm0.5Sr0.5CoO3-δ/Sm0.2 Ce0.8O1.9 Incorporation with Binary Carbonate as Potential Cathode Materials for SOFCcitations
- 2018Influence of Heat Treatment and Milling Speed on Phase Stability of Ba0.5Sr0.5Co0.8Fe0.2O3-δ Composite Cathode Solid Oxide Fuel Cellcitations
- 2017Effects of Milling Speed and Calcination Temperature on the Phase Stability of Ba0.5Sr0.5Co0.8Fe3-δcitations
- 2017Diversification studies on samarium strontium cobaltite regarding thermal & structural properties as based composite cathode of SOFCcitations
- 2016Preparation of Nickel Oxide-Samarium-Doped Ceria Carbonate Composite Anode Powders by Using High-Energy Ball Milling for Low-Temperature Solid Oxide Fuel Cellscitations
- 2016Ba- and La- strontium cobalt ferrite carbonate composite as cathode materials for low temperature SOFCcitations
- 2015XRD and EDS Analysis of Composite Cathode Powders LSCF-SDCC-Ag for Low Temperature Solid Oxide Fuel Cells (LTSOFC)citations
Places of action
Organizations | Location | People |
---|
article
Effect of SSC Loading on the Microstructural Stability SSC-SDCC Composite Cathode as New Potential SOFC
Abstract
The composite cathode, samarium strontium cobaltite-samarium doped ceria carbonate (SSC-SDCC), was developed and scrutinised as for potential cathode materials in solid oxide fuel cell (SOFC) applications. The microstructural and physical characteristics of composite cathode powders have been explored in terms of SSC loading and calcination temperature. SSC-SDCC composite powders were intimately mixed by employing fast high energy ball milling (HEBM) method with different SSC loadings (50-70 wt.%) and subjected to various calcination temperatures from 600 °C to 750 °C. Subsequently, the calcined cathode powders were then used to fabricate composite pellets using a uniaxial press and undergo sintering process at a temperature of 600 °C. Microstructural behaviour of the composite cathode powders was examined using X- Ray diffraction (XRD) and Energy Dispersive Spectroscopy (EDS). The physical stability sintered composite pellets were also investigated from the observation on Scanning Electron Microscopy (SEM). All samples retained their microstructural compatibility and stability, with the incorporation of carbonate after various processes. The composite cathode of SSC-SDCC55 with calcination temperature at 750 oC was chosen to be used as a potential cathode material for LTSFOC performance regarding the optimum chemical and microstructural properties.