People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Østergaard, Martin Bonderup
Aalborg University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2024Anomaly in the relation between thermal conductivity and crystallinity of silicate glass-ceramicscitations
- 2024Suppressing the thermal conduction in glass–ceramic foams by controlling crystallizationcitations
- 2024Crystallinity dependence of thermal and mechanical properties of glass-ceramic foamscitations
- 2024A self-cleaning thermocatalytic membrane for bisphenol a abatement and fouling removalcitations
- 2023A Thermocatalytic Ceramic Membrane by Perovskite Incorporation in the Alumina Frameworkcitations
- 2023Thermocatalytic Performance of LaCo1−xNixO3−δ Perovskites in the Degradation of Rhodamine Bcitations
- 2023Beneficial effect of cerium excess on in situ grown Sr0.86Ce0.14FeO3–CeO2 thermocatalysts for the degradation of bisphenol Acitations
- 2023Beneficial effect of cerium excess on in situ grown Sr 0.86 Ce 0.14 FeO 3 –CeO 2 thermocatalysts for the degradation of bisphenol Acitations
- 2022Fracture energy of high-Poisson’s ratio oxide glassescitations
- 2021The foaming mechanism of glass foams prepared from the mixture of Mn 3 O 4 , carbon and CRT panel glasscitations
- 2021The foaming mechanism of glass foams prepared from the mixture of Mn3O4, carbon and CRT panel glasscitations
- 2021Degradation of organic micropollutants in water using a novel thermocatalytic membrane
- 2020Structure Dependence of Poisson’s Ratio in Cesium Silicate and Borate Glassescitations
- 2019Revisiting the Dependence of Poisson’s Ratio on Liquid Fragility and Atomic Packing Density in Oxide Glassescitations
- 2018Effect of alkali phosphate content on foaming of CRT panel glass using Mn3O4 and carbon as foaming agentscitations
- 2017Influence of foaming agents on solid thermal conductivity of foam glasses prepared from CRT panel glasscitations
- 2017Thermal Conductivity of Foam Glasses Prepared using High Pressure Sintering
- 2017Foaming Glass Using High Pressure Sintering
- 2016Influence of foaming agents on both the structure and the thermal conductivity of silicate glasses
Places of action
Organizations | Location | People |
---|
conferencepaper
Thermal Conductivity of Foam Glasses Prepared using High Pressure Sintering
Abstract
The increasing focus on better building insulation is important to lower energy consumption. Development of new and improved insulation materials can contribute to solving this problem. Foam glass has a good insulating effect due to its large gas volume (porosity >90 %). It can be produced with open or closed pores. If only open pores exist, air is the dominating medium for the insulating effect. However, closed pores make it possible to trap gases inside the foam. The gas can be introduced either chemically, through foaming agents, or physically, by gas compression-decompression at high temperatures. By introducing the gas physically it is possible to control composition of both the gas phase and the solid phase of the foam glass. In this work we have prepared foam glasses by physical foaming. Panel glass powder from obsolete televisions was first sintered under a gas pressure of 5-25 MPa using helium, nitrogen, or argon. The sintering result in closed-porous body with high pressure bubbles. Subsequent reheating above the glass transition temperature resulted in an expansion of the bubbles. The entrapped gas composition was analysed by gas chromatography. Furthermore, we investigated how the thermal conductivity varies with gas composition. This allows us to determine the contribution of the gas and solid phase to the total thermal conductivity of a foam glass.