People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Østergaard, Martin Bonderup
Aalborg University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2024Anomaly in the relation between thermal conductivity and crystallinity of silicate glass-ceramicscitations
- 2024Suppressing the thermal conduction in glass–ceramic foams by controlling crystallizationcitations
- 2024Crystallinity dependence of thermal and mechanical properties of glass-ceramic foamscitations
- 2024A self-cleaning thermocatalytic membrane for bisphenol a abatement and fouling removalcitations
- 2023A Thermocatalytic Ceramic Membrane by Perovskite Incorporation in the Alumina Frameworkcitations
- 2023Thermocatalytic Performance of LaCo1−xNixO3−δ Perovskites in the Degradation of Rhodamine Bcitations
- 2023Beneficial effect of cerium excess on in situ grown Sr0.86Ce0.14FeO3–CeO2 thermocatalysts for the degradation of bisphenol Acitations
- 2023Beneficial effect of cerium excess on in situ grown Sr 0.86 Ce 0.14 FeO 3 –CeO 2 thermocatalysts for the degradation of bisphenol Acitations
- 2022Fracture energy of high-Poisson’s ratio oxide glassescitations
- 2021The foaming mechanism of glass foams prepared from the mixture of Mn 3 O 4 , carbon and CRT panel glasscitations
- 2021The foaming mechanism of glass foams prepared from the mixture of Mn3O4, carbon and CRT panel glasscitations
- 2021Degradation of organic micropollutants in water using a novel thermocatalytic membrane
- 2020Structure Dependence of Poisson’s Ratio in Cesium Silicate and Borate Glassescitations
- 2019Revisiting the Dependence of Poisson’s Ratio on Liquid Fragility and Atomic Packing Density in Oxide Glassescitations
- 2018Effect of alkali phosphate content on foaming of CRT panel glass using Mn3O4 and carbon as foaming agentscitations
- 2017Influence of foaming agents on solid thermal conductivity of foam glasses prepared from CRT panel glasscitations
- 2017Thermal Conductivity of Foam Glasses Prepared using High Pressure Sintering
- 2017Foaming Glass Using High Pressure Sintering
- 2016Influence of foaming agents on both the structure and the thermal conductivity of silicate glasses
Places of action
Organizations | Location | People |
---|
conferencepaper
Influence of foaming agents on both the structure and the thermal conductivity of silicate glasses
Abstract
Foam glass is one of the most promising insulation materials for constructions since it has low thermal conductivity, high compressive strength, non-water permeability, and high fire resistance. They can be produced using cullet sources, e.g., cathode ray tubes (CRT) panel glass, and foaming agents such as metal carbonates, or oxidizing transition metal oxides combined with carbonaceous sources. In this work, we mix CRT panel glass powder with different foaming agents: CaCO3 (0-4 wt%), Fe2O3 (0-6 wt%), and MnxOy (0-10 wt%). The powder mixtures are sintered in the range between the glass transition temperature (Tg) and the foaming temperature (corresponding to the viscosity range of 1012-106 Pa s) at 10 K/min and cool down to 773 K (below Tg) at 30 K/min and naturally down to room temperature. Upon sintering, the foaming agents are partially incorporated into the glass structure. Afterwards we measure the thermal conductivity of the sintered samples with Laser Flash Technique to see its dependence on the degree of incorporation of the foaming agents into the glass structure. In parallel we prepare glass samples by adding the above-mentioned foaming agents to the CRT panel glass via high temperature (about 1500 C) melting and subsequent quenching. We compare the thermal conductivity of re-melted samples with that of the sintered samples to study the influence of the structural incorporation of the foaming agents on the thermal conductivity. The samples could crystallize during the heating process, and thereby their thermal conductivity can be influenced. The crystallinity of the samples is determined by means of X-ray diffraction. The change of the glass structure can be indirectly reflected by Tg change which is measured using a differential scanning calorimeter.