People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mylonakis, George
University of Bristol
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2024Similarity based nonlinear settlement predictions of circular surface footings on clay
- 2023"p-y" curves for piles in radially inhomogeneous soil
- 2022A simplified analytical model for developing “t-z” curves for axially loaded piles
- 2022Axial shear friction of polypropylene pipes against granular beds
- 2021Relationship between texture of polypropylene coatings and interface friction for sand at low stress levelscitations
- 2021Relationship between texture of polypropylene coatings and interface friction for sand at low stress levelscitations
- 2021Effects of Soil-Wall Separation on Static Earth Pressures
- 2019Cyclic polypropylene pipeline coating interface strength with granular materials at low stress
- 2019Cyclic polypropylene pipeline coating interface strength with granular materials at low stress
- 2019An analytical continuum model for axially loaded end-bearing piles in inhomogeneous soilcitations
- 2018Strain and strain rate effects on the rocking response of footing subjected to machine vibrations
- 2017Approximate solution for seismic earth pressures on rigid walls retaining inhomogeneous elastic soilcitations
- 2016Soil reaction to lateral harmonic pile motioncitations
- 2015Characterisation of shear wave velocity profiles of non-uniform bi-layer soil deposits:Analytical evaluation and experimental validationcitations
- 2015Characterisation of shear wave velocity profiles of non-uniform bi-layer soil depositscitations
- 2015Torsional vibrations of a column of fine-grained materialcitations
- 20131D harmonic response of layered inhomogeneous soilcitations
- 2011Wave dispersion studies in dry granular materials by the distinct element method
Places of action
Organizations | Location | People |
---|
conferencepaper
"p-y" curves for piles in radially inhomogeneous soil
Abstract
“p-y” curves are used to simplify the pile response of laterally loaded piles at any given depth by describing the applied lateral soil reaction as a function of the lateral displacement. Simple analytical solutions in two-dimensions for system stiffness are available by modelling a segment of the pile surrounded by an annular zone of linear-elastic soil. Current solutions assume homogeneous soil conditions. However, installation of a bored pile in clay would result in a region of softened material immediately surrounding the pile-soil interface, which can be modelled using a function describing the variation of shear modulus with distance from the pile. Such<br/>functions are available in the literature using linear and power-law variations. This paper derives an improved solution for the system stiffness considering the effects of pile installation. The previously discussed annular zone of soil is split into multiple rings with each able to define an independent shear modulus. A solution for the overall system stiffness is provided. Three-dimensional and parameter effects are discussed.