People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Sujon, Md Abu Shaid
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2024Surface roughness of the parts produced by Tomographic Volumetric Printing (TVP) process
- 2024Novel approach for optimizing mechanical and damping performance of MABS composites reinforced with basalt fiberscitations
- 2023Enhancement of viscoelastic property of MABS processed by melt compounding and injection moldingcitations
- 2023Enhancing vibration damping properties of MABS/VDT blends using SEBS-g-MAH as a compatibilizercitations
- 2023Effects of SEBS-g-MAH addition on the vibration damping and mechanical properties of MABS/VDT blend
- 2020Fabrication and Experimental Investigation on Tensile and Flexural Properties for Different Stacking Sequence of Jute and Carbon Fiber Reinforced Epoxy Compositecitations
Places of action
Organizations | Location | People |
---|
document
Effects of SEBS-g-MAH addition on the vibration damping and mechanical properties of MABS/VDT blend
Abstract
This study explored the influence of Maleic Anhydride-grafted Styrene Ethylene Butylene Styrene (SEBS-g-MAH) compatibilizer on the development of a novel kind of polymer blend to increase the vibration damping property of Methyl Methacrylate Acrylonitrile Butadiene Styrene (MABS) by compounding with a Styrene-based engineered elastomer (tradename VDT). Most of the research related to polymer blends has been focused on enhancing the material's stiffness, thermal or electrical conductivity by incorporating stiffer materials like glass fiber, graphene, CNT and so on. However, a limited amount of study has been done to investigate the possibility of increasing the damping property of the polymer by the use of melt compounding. Thus, a multiphase polymer blend was formulated by melt mixing in a twin screw extruder with three different weight ratios (10, 20, and 30 wt%) of VDT to enhance vibration damping with a minimum tradeoff in stiffness property. To improve the compatibility between MABS/VDT, SEBS-g-MAH was used with three different weight percentages (2, 4, and 6 wt%) and the effect of the compatibilizer was compared without it as well. The compatibility and effectiveness of the compatibilizer were investigated by studying their microstructure, tensile, dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC), nuclear magnetic resonance (NMR), light optical microscopy (LOM), and scanning electron microscopy (SEM) analysis and the samples were prepared by injection molding. The damping performance has been shown to improve as the weight percent of VDT in the blends increases. It was also found that the addition of 4 wt % of SEBS-g-MAH had the highest effect on the improvement of the damping performance and tensile strength compared to the additions of 2 wt % and 6 wt % of the compatibilizer.