People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Fusiek, Grzegorz
University of Strathclyde
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2023Development of Fiber Bragg grating strain amplification sensor for use in nuclear power plants
- 2023Design and implementation of a passive autoranging circuit for hybrid FBG-PZT photonic current transducercitations
- 2022Construction and evaluation of an optical medium voltage transducer module aimed at a 132 kV optical voltage sensor for WAMPAC systemscitations
- 2020Photonic voltage transducer with lightning impulse protection for distributed monitoring of MV networkscitations
- 2018Design and demonstration of a low-cost small-scale fatigue testing machine for multi-purpose testing of materials, sensors and structurescitations
- 2017Comparison of epoxy and braze-welded attachment methods for FBG strain gauges
- 2017Optical voltage sensor for MV networkscitations
- 2016First-time demonstration of measuring concrete prestress levels with metal packaged fibre optic sensorscitations
- 2012Towards the development of a downhole optical voltage sensor for monitoring electrical submersible pumpscitations
- 2011Induction heating assisted optical fiber bonding and sealing techniquecitations
- 2011Preliminary evaluation of a high-pressure, high-temperature downhole optical sensorcitations
Places of action
Organizations | Location | People |
---|
document
Development of Fiber Bragg grating strain amplification sensor for use in nuclear power plants
Abstract
This paper outlines the motivation for structural health monitoring with fiber Bragg grating (FBG) strain sensors in nuclear power plants where a high measurement resolution is normally required. Hence, a mechanical strain amplification is needed to increase the strain sensitivities. To ensure long-term stability, an epoxy-free mechanical strain amplification sensor is constructed using a Kovar encapsulated FBG. The strain response of the sensor is characterized using an extensometer. It was found that the achieved sensitivity of 1.16 pm/με yields a strain resolution of 0.43 με with current interrogation method – which exceeds the required strain resolution for the postulated scenario. However, if a higher resolution is required, it can be achieved by using an interrogator with a higher wavelength resolution or using a strain amplification with a larger strain amplification coefficient.