Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Cocard, Margot

  • Google
  • 1
  • 4
  • 0

University of Strathclyde

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023An investigation into the effect of ventilation, bulbs and flow turbulence on lifting T foil performancecitations

Places of action

Chart of shared publication
Duncan, Iain
1 / 1 shared
Goodman, Thomas
1 / 1 shared
Day, Alexander
1 / 4 shared
Dai, Saishuai
1 / 2 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Duncan, Iain
  • Goodman, Thomas
  • Day, Alexander
  • Dai, Saishuai
OrganizationsLocationPeople

document

An investigation into the effect of ventilation, bulbs and flow turbulence on lifting T foil performance

  • Duncan, Iain
  • Goodman, Thomas
  • Day, Alexander
  • Cocard, Margot
  • Dai, Saishuai
Abstract

Flapped lifting T foils are a key part of modern high-performance craft due to their ability to reduce wetted surface area and hence drag at high speed. The performance of these foils is significantly affected when ventilated. Ventilation on a T-foil normally leads to a dramatic and uncontrolled loss of lift and overall vessel drag increment due to the hull coming into contact with the water surface.Limited research of ventilated T foils has been published due to challenges associated with reproducing ventilations in a relatively low-speed tow tank environment.The current study looks into the performance of a Waszp rudder fitted with modifications. The position of the horizontal foil relative to the vertical strut was varied as was the flow turbulence around the vertical strut using a turbulence stimulating wire. Towing test of the modified Waszp rudder was carried out at the Kelvin Hydrodynamics Laboratory of University of Strathclyde.Results were compared against the original Waszp T-foil.Experimental testing results shows how the foil can be modified to the T foil performance. It also shows changes in the characteristics in the ventilated cavity when the foil is operating in fully ventilated flow. A new method capable of stimulating foil ventilation repeatably was developed utilizing turbulence wire which can potentially enable more T-foil ventilation-related experimental studies in the future.

Topics
  • impedance spectroscopy
  • surface
  • wire