People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Nguyen, Vu
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2024Advances in Additive Manufacturing of Auxetic Structures for Biomedical Applicationscitations
- 2024Analysis of self-supporting conformal cooling channels additively manufactured by hybrid directed energy deposition for IM toolingcitations
- 2023Advances in Multiscale Modelling of Metal Additive Manufacturing
- 2023Osseointegrability of 3D-printed porous titanium alloy implant on tibial shaft bone defect in rabbit modelcitations
- 2022Directed-energy deposition (DED) of Ti-6Al-4V alloy using fresh and recycled feedstock powders under reactive atmosphere
- 2021Progress Towards a Complete Model of Metal Additive Manufacturingcitations
- 2019Measurement of Laser Absorptivity by Calibrated Melt Pool Simulation
- 2019Residual Stress in Additive Manufacture
- 2018Accelerating Experimental Design by Incorporating Experimenter Hunchescitations
- 2017Modelling Powder Flow in Metal Additive Manufacturing Systems
- 2017A desktop computer model of the arc, weld pool and workpiece in metal inert gas weldingcitations
- 2017Aiming for modeling-assisted tailored designs for additive manufacturingcitations
- 2015A desktop computer model of arc welding using a CFD approach
- 2015Prediction of springback in anisotropic sheet metals: The effect of orientation and frictioncitations
- 2011Modelling die filling in ultra-thin aluminium die castings
- 20113D thermo-mechanical modelling of wheel and belt continuous castingcitations
Places of action
Organizations | Location | People |
---|
document
Advances in Multiscale Modelling of Metal Additive Manufacturing
Abstract
Metal powder bed fusion has become a key technology in additive manufacturing of parts or components having complex geometries. In this process, highly transient physical phenomena that occur at different length scales are difficult to observe. Additionally, experimental data needed for process understanding and improvement are challenging to obtain. Modelling therefore becomes a crucial tool to provide more insight into the process.This presentation reports our recent advances in multiscale modelling of metal powder bed fusion process. Physics phenomena such as powder raking, powder melting and solidification, flow of liquid metal in the melt pool, heat transfer, microstructure evolution, and the residual stress and deformation of the component are treated using several different computational techniques. The framework to develop and link different models of different physical processes into a comprehensive model of laser powder-bed fusion additive manufacturing is discussed and demonstrated.