Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ramírez, E. A.

  • Google
  • 1
  • 4
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Equivalent Material analysis of Triply Periodic Minimal Surfacescitations

Places of action

Chart of shared publication
Beraud, Nicolas
1 / 3 shared
Museau, Matthieu
1 / 10 shared
Pourroy, Franck
1 / 1 shared
Villeneuve, François
1 / 13 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Beraud, Nicolas
  • Museau, Matthieu
  • Pourroy, Franck
  • Villeneuve, François
OrganizationsLocationPeople

document

Equivalent Material analysis of Triply Periodic Minimal Surfaces

  • Beraud, Nicolas
  • Ramírez, E. A.
  • Museau, Matthieu
  • Pourroy, Franck
  • Villeneuve, François
Abstract

The manufacturing of complex organic shapes for metallic mechanical products is becoming possible due to current advances in additive manufacturing technologies. In particular, the use of Triply Periodic Minimal Surfaces (TPMS), as elements for cellular constructs, have shown potential for the design of lightweight structures, given their advantages over traditional lattices design. TPMS patterns, being mathematically-defined open surfaces with a local minimal area, zero mean curvature and three- dimensional periodicity, can be used to create materials with continuous and interconnected reinforcements due to their smooth transitions between unit-cells. In this paper, the mechanical response of constant-thickness shell-based TPMS is explored. For this purpose, Primitive and Gyroid patterns, which are common examples of TPMS, of diverse relative densities are designed following a previously established modelling methodology. Finite Element Analysis is used to test the mechanical response of these constructs under compression and shear loads in two scenarios: a single pattern unit-cell and a matrix assembly of patterns. The response of the two tested cases are compared and discussed. As a result, power law models of mechanical properties as a function of the patterns’ relative density are proposed under a framework of Equivalent Material or Metamaterial analysis. The outcomes of the study will potentially aid in the correlation of Finite Element Analysis results with design methodologies of Functionally Graded Cellular Materials with variable density, in an effort to develop structures with a simultaneous optimization of strength and weight.

Topics
  • density
  • impedance spectroscopy
  • surface
  • strength
  • finite element analysis
  • metamaterial
  • additive manufacturing
  • gyroid