People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Javanshour, Farzin
VTT Technical Research Centre of Finland
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (20/20 displayed)
- 2024Stiffness of In-Situ Formed Interleaving Polymeric Nanofiber-Epoxy Nanocompositescitations
- 2023Effect of graphene oxide fibre surface modification on low-velocity impact and fatigue performance of flax fibre reinforced compositescitations
- 2023Effect of graphene oxide fibre surface modification on low-velocity impact and fatigue performance of flax fibre reinforced compositescitations
- 2023Interfacial Toughening Strategies for Impact and Fatigue Tolerant Structural Biocomposites
- 2022High-speed thermal mapping and impact damage onset in CFRP and FFRP
- 2022Flax fibre sizings for fibre-reinforced thermosets - investigating the influences of different sizing agents on fibre moisture content and composite properties
- 2022Bearing strength prediction by cfrp and ffrp damage onset criteria for riveted joints
- 2022High-Speed Thermal Mapping and Impact Damage Onset in CFRP and FFRP
- 2022The performance of flax reinforced composites for wireless and sport applications : natural additives and sandwich concepts
- 2022Flax fibre sizings for fibre-reinforced thermosets - investigating the influences of different sizing agents on the composite properties
- 2022Bearing strength prediction by cfrp and ffrp dam age onset criteria for riveted joints
- 2022Impact and fatigue tolerant natural fibre reinforced thermoplastic composites by using non-dry fibrescitations
- 2022Impact and fatigue tolerant natural fibre reinforced thermoplastic composites by using non-dry fibrescitations
- 2021Modulating impact resistance of flax epoxy composites with thermoplastic interfacial tougheningcitations
- 2021One surface treatment, multiple possibilities : Broadening the use‐potential of para‐aramid fibers with mechanical adhesioncitations
- 2021One surface treatment, multiple possibilitiescitations
- 2021Microscale sensor solution for data collection from fibre-matrix interfacescitations
- 2021One Surface Treatment, Multiple Possibilities: Broadening the Use-Potential of Para-Aramid Fibers with Mechanical Adhesioncitations
- 2021Effect of graphene oxide surface treatment on the interfacial adhesion and the tensile performance of flax epoxy compositescitations
- 2017Synergistic role of in-situ crosslinkable electrospun nanofiber/epoxy nanocomposite interlayers for superior laminated compositescitations
Places of action
Organizations | Location | People |
---|
document
High-Speed Thermal Mapping and Impact Damage Onset in CFRP and FFRP
Abstract
The use of alternative, natural fibers instead of synthetic reinforcements in polymeric matrix composites, subjected to certain out-of-plane loads, requires a study on the susceptibility to damage. The aim of this work is to study the impact behavior and the stiffness reduction in flax and carbon fibre reinforced plastic laminates subjected to a 15 J drop-tower test. The detection of selected damage mechanisms was done by high-speed optical and infrared cameras monitoring the full-field deformation and temperatures on the composite surface. The elastic response of the laminates was modelled by a finite element method and ply failure was analyzed by the Hashin's and Puck's failure criteria. The results of thermal and strain measurements indicated the primary cracks due to the bending effect for the flax laminate. For the carbon laminate, the final fibre breaking was indicated. Numerical results showed the accuracy of the Puck's criterion about the prediction of first stages of the impact failure.