Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Cimalla, Volker

  • Google
  • 18
  • 83
  • 711

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (18/18 displayed)

  • 2024Absorption and birefringence study for reduced optical losses in diamond with high nitrogen-vacancy concentration5citations
  • 2024Coalescence as a key process in wafer-scale diamond heteroepitaxy2citations
  • 2024Coalescence as a key process in wafer-scale diamond heteroepitaxy2citations
  • 2024Epitaxial Lateral Overgrowth of Wafer‐Scale Heteroepitaxial Diamond for Quantum Applications3citations
  • 2022Direct low-temperature bonding of AlGaN/GaN thin film devices onto diamond substratescitations
  • 2021Effect of dislocations on electrical and electron transport properties of InN thin films. II. Density and mobility of the carriers81citations
  • 2021Coalescence aspects of III-nitride epitaxy29citations
  • 2021Effect of dislocations on electrical and electron transport properties of InN thin films. I. Strain relief and formation of a dislocation network48citations
  • 2018Metallization design investigations for graphene as a virtually massless electrode material for 2.1 GHz solidly mounted (BAW-SMR) resonators1citations
  • 2017Wettability investigations and wet transfer enhancement of large-area CVD-Graphene on aluminum nitride9citations
  • 2016Electrostatic self-assembly of diamond nanoparticles onto Al- and N-polar sputtered aluminum nitride surfaces12citations
  • 2016Interaction of indium oxide nanoparticle film surfaces with ozone, oxygen and water11citations
  • 2012Plasma affected 2DEG properties on GaN/AlGaN/GaN HEMTs3citations
  • 2010Elastic properties of nanowires33citations
  • 2010Investigation of stress in AIN thin films for piezoelectric MEMScitations
  • 2009Determination of the composition of In(x)Ga(1-x)N from strain measurements64citations
  • 2009Band gap, electronic structure, and surface electron accumulation of cubic and rhombohedral In2O3 ; Bandabstand, elektronische Struktur und Elektronenakkumulation an der Oberfläche von kubischem und rhomoedrischem In2O3408citations
  • 2005New route of nanowire integration in microfabrication processes for sensor applicationscitations

Places of action

Chart of shared publication
Luo, Tingpeng
2 / 2 shared
Lindner, Lukas
1 / 1 shared
Vidal, Xavier
1 / 3 shared
Blinder, Remi
1 / 1 shared
Jeske, Jan
4 / 4 shared
Haertelt, Marko
1 / 1 shared
Hahl, Felix A.
1 / 1 shared
Onoda, Shinobu
1 / 2 shared
Langer, Julia
1 / 1 shared
Knittel, Peter
3 / 3 shared
Engels, Jan
3 / 3 shared
Giese, Christian
3 / 3 shared
Kustermann, Jan
3 / 3 shared
Klar, Patricia
1 / 1 shared
Kirste, Lutz
5 / 46 shared
Lebedev, Vadim Lebedev
2 / 2 shared
Weippert, Jürgen
3 / 3 shared
Graff, Andreas
2 / 9 shared
Lebedev, Vadim
5 / 9 shared
Quellmalz, Patricia
2 / 2 shared
Gerrer, Thomas
1 / 1 shared
Morales, Francisco Miguel
1 / 4 shared
Baumann, T.
1 / 4 shared
Lozano Suárez, Juan Gabriel
3 / 5 shared
Ambacher, Oliver
10 / 40 shared
González Robledo, David
3 / 3 shared
Lebedev, Vladim B.
3 / 3 shared
Niebelschuetz, Florentina
1 / 1 shared
Cengher, Dorin
2 / 2 shared
Tonisch, Katja
1 / 3 shared
Himmerlich, Marcel
1 / 9 shared
Pezoldt, J.
1 / 3 shared
Krischok, Stefan
1 / 6 shared
Knapp, Marius
2 / 2 shared
Hoffmann, René
1 / 1 shared
Lee, Kee-Han
1 / 1 shared
Kurzyp, Magdalena
1 / 1 shared
Nebel, Christoph E.
1 / 4 shared
Reusch, Markus
1 / 6 shared
Arnault, Jean-Charles
1 / 15 shared
Yoshikawa, Taro
1 / 3 shared
Zuerbig, Verena
1 / 1 shared
Eisenhardt, A.
1 / 1 shared
Wang, C. Y.
2 / 4 shared
Himmerlich, M.
2 / 6 shared
Berthold, T.
1 / 1 shared
Krischok, S.
2 / 6 shared
Müller, Stefan
1 / 16 shared
Polyakov, V. M.
1 / 3 shared
Pletschen, Wilfried
1 / 4 shared
Lorenz, P.
1 / 3 shared
Linkohr, S.
1 / 1 shared
Niebelschütz, F.
1 / 1 shared
Brückner, Peter
1 / 5 shared
Tonisch, K.
1 / 2 shared
Röhlig, C.-C.
2 / 2 shared
Bludau, O.
1 / 1 shared
Knöbber, F.
1 / 4 shared
Baumann, H.
1 / 6 shared
Sah, R. E.
1 / 8 shared
Hiesinger, P.
1 / 2 shared
Baeumler, Martina
1 / 3 shared
Morales, F. M.
1 / 5 shared
Lozano, J. G.
1 / 2 shared
García, R.
1 / 16 shared
Gonzales, D.
1 / 1 shared
Hauguth-Frank, S.
1 / 1 shared
Mcconville, C. F.
1 / 26 shared
Veal, T. D.
1 / 23 shared
King, P. D. C.
1 / 23 shared
Bell, G. R.
1 / 2 shared
Bechstedt, F.
1 / 18 shared
Fuchs, F.
1 / 8 shared
Egdell, R. G.
1 / 7 shared
Payne, D. J.
1 / 9 shared
Bourlange, A.
1 / 3 shared
Zhang, H.
1 / 92 shared
Jebril, Seid
1 / 7 shared
Adelung, Rainer
1 / 120 shared
Raudra, Shiva Kumar
1 / 1 shared
Paretkar, Dadhichi
1 / 1 shared
Wille, Sebastian
1 / 7 shared
Elbahri, Mady
1 / 27 shared
Chart of publication period
2024
2022
2021
2018
2017
2016
2012
2010
2009
2005

Co-Authors (by relevance)

  • Luo, Tingpeng
  • Lindner, Lukas
  • Vidal, Xavier
  • Blinder, Remi
  • Jeske, Jan
  • Haertelt, Marko
  • Hahl, Felix A.
  • Onoda, Shinobu
  • Langer, Julia
  • Knittel, Peter
  • Engels, Jan
  • Giese, Christian
  • Kustermann, Jan
  • Klar, Patricia
  • Kirste, Lutz
  • Lebedev, Vadim Lebedev
  • Weippert, Jürgen
  • Graff, Andreas
  • Lebedev, Vadim
  • Quellmalz, Patricia
  • Gerrer, Thomas
  • Morales, Francisco Miguel
  • Baumann, T.
  • Lozano Suárez, Juan Gabriel
  • Ambacher, Oliver
  • González Robledo, David
  • Lebedev, Vladim B.
  • Niebelschuetz, Florentina
  • Cengher, Dorin
  • Tonisch, Katja
  • Himmerlich, Marcel
  • Pezoldt, J.
  • Krischok, Stefan
  • Knapp, Marius
  • Hoffmann, René
  • Lee, Kee-Han
  • Kurzyp, Magdalena
  • Nebel, Christoph E.
  • Reusch, Markus
  • Arnault, Jean-Charles
  • Yoshikawa, Taro
  • Zuerbig, Verena
  • Eisenhardt, A.
  • Wang, C. Y.
  • Himmerlich, M.
  • Berthold, T.
  • Krischok, S.
  • Müller, Stefan
  • Polyakov, V. M.
  • Pletschen, Wilfried
  • Lorenz, P.
  • Linkohr, S.
  • Niebelschütz, F.
  • Brückner, Peter
  • Tonisch, K.
  • Röhlig, C.-C.
  • Bludau, O.
  • Knöbber, F.
  • Baumann, H.
  • Sah, R. E.
  • Hiesinger, P.
  • Baeumler, Martina
  • Morales, F. M.
  • Lozano, J. G.
  • García, R.
  • Gonzales, D.
  • Hauguth-Frank, S.
  • Mcconville, C. F.
  • Veal, T. D.
  • King, P. D. C.
  • Bell, G. R.
  • Bechstedt, F.
  • Fuchs, F.
  • Egdell, R. G.
  • Payne, D. J.
  • Bourlange, A.
  • Zhang, H.
  • Jebril, Seid
  • Adelung, Rainer
  • Raudra, Shiva Kumar
  • Paretkar, Dadhichi
  • Wille, Sebastian
  • Elbahri, Mady
OrganizationsLocationPeople

article

New route of nanowire integration in microfabrication processes for sensor applications

  • Jebril, Seid
  • Cimalla, Volker
  • Cengher, Dorin
  • Adelung, Rainer
  • Raudra, Shiva Kumar
  • Ambacher, Oliver
  • Paretkar, Dadhichi
  • Wille, Sebastian
  • Elbahri, Mady
Abstract

<p>The integration of nanostructures like nanowires into working devices is often a difficult task. Even though demonstration devices with fascinating properties have been build [1], they are rather far away from being integrated into microelectronic devices. Recently, we successfully demonstrated [2] how thin film fracture can be beneficially used to serve as a template for the fabrication of well aligned nanowires. Here we demonstrate how this approach can be used to integrate nanowires into a conventional silicon microstructure. We use silicon wafers coated with a microstructured photoresist thin film. At special structured predetermined breaking points, designed by conventional lithography steps, nanocracks can be fabricated by using cold gases, see fig. 1a and b. Those cracks serve as a template for the further processing. Most simple, they can just be filled with metal by sputter deposition, resulting in nanowires (see fig. 1c) connected with microstructured power lines. Such an approach can be chosen to fabricate nanosensors. By applying a more sophisticated deposition technique, parallel nanowires can be formed, even with different materials, see fig. 1d. Here, the nanocrack is used as a nanoscale shadow mask. Another variant is the formation of nanochannels by etching into the material. Nanochannels with a width of less than 40 nm could be fabricated, see fig. 1e. Moreover, we demonstrate this process also on flexible polymer substrates. First demonstration circuits, applications in the field of optics, and nanofluidic as well as the details of the fabrication process will be discussed.</p>

Topics
  • Deposition
  • impedance spectroscopy
  • microstructure
  • polymer
  • thin film
  • laser emission spectroscopy
  • crack
  • Silicon
  • etching
  • lithography
  • aligned