People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Jander, Albrecht
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Coexistence of Low Damping and Strong Magnetoelastic Coupling in Epitaxial Spinel Ferrite Thin Films
Abstract
Low-loss magnetization dynamics and strong magnetoelastic coupling are generally mutually exclusive properties due to opposing dependencies on spin-orbit interactions. So far, the lack of low-damping, magnetostrictive ferrite films has hindered the development of power-efficient magnetoelectric and acoustic spintronic devices. Here, magnetically soft epitaxial spinel NiZnAl-ferrite thin films with an unusually low Gilbert damping parameter (<3 × 10-3 ), as well as strong magnetoelastic coupling evidenced by a giant strain-induced anisotropy field (≈1 T) and a sizable magnetostriction coefficient (≈10 ppm), are reported. This exceptional combination of low intrinsic damping and substantial magnetostriction arises from the cation chemistry of NiZnAl-ferrite. At the same time, the coherently strained film structure suppresses extrinsic damping, enables soft magnetic behavior, and generates large easy-plane magnetoelastic anisotropy. These findings provide a foundation for a new class of low-loss, magnetoelastic thin film materials that are promising for spin-mechanical devices.