People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Frost, Ray
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2020Volatilisation of trace elements during reduction of iron ore by hydrogencitations
- 2019Elemental deportment and chemical structure evolution of iron ore during direct reduction in hydrogen atmosphere
- 2016Environmental applications of inorganic-organic clays for recalcitrant organic pollutants removal: Bisphenol Acitations
- 2014Vibrational spectroscopy of the sulphate mineral sturmanite from Kuruman manganese deposits, South Africacitations
- 2014Infrared and raman spectroscopic characterization of the borate mineral vonsenite Fe2/2+ Fe3+BO5citations
- 2014A vibrational spectroscopic study of the phosphate mineral churchite (REE)(PO4).2H2Ocitations
- 2013Vibrational spectroscopic characterization of the phosphate mineral kulanite Ba(Fe2+,Mn2+,Mg)2(Al,Fe3+)2(PO4)3(OH)3citations
- 2013Vibrational spectroscopic characterization of the phosphate mineral series eosphorite-childrenite-(Mn,Fe)Al(PO4)(OH)2.(H2O)citations
- 2013The phosphate mineral arrojadite-(KFe) and its spectroscopic characterizationcitations
- 2013Vibrational spectroscopic characterization of the phosphate mineral phosphophyllite - Zn2Fe(PO4)2.4H2O, from Hagendorf Sud, Germany and in comparison with other zinc phosphatescitations
- 2012Thermal analysis and application of organoclays for water purification
- 2012Raman and infrared spectroscopic characterization of beryllonite, a sodium and beryllium phosphate mineral - implications for mineral collectorscitations
- 2011Characterisation of organoclays and adsorption of p-nitrophenol: Environmental applicationcitations
- 2011Synthesis and vibrational spectroscopy of halotrichite and bilinitecitations
- 2009Thermal decomposition of hydrotalcites with variable cationic ratioscitations
- 2008Thermal decomposition of synthesized layered double hydroxides based upon Mg/(Fe,Cr) and carbonatecitations
- 2008Thermal decomposition of hydrotalcite with molybdate and vanadate anions in the interlayercitations
- 2008Characterisation of red mud and seawater neutralised red mud using vibrational spectroscopic techniques
Places of action
Organizations | Location | People |
---|
document
Characterisation of red mud and seawater neutralised red mud using vibrational spectroscopic techniques
Abstract
Bauxite refinery residues are derived from the Bayer process by the digestion of crushed bauxite in concentrated caustic at elevated temperatures. Chemically, it comprises, in varying amounts (depending upon the composition of the starting bauxite), oxides of iron and titanium, residual alumina, sodalite, silica, and minor quantities of other metal oxides. Bauxite residues are being neutralised by seawater in recent years to reduce the alkalinity in bauxite residue, through the precipitation of hydrotalcite-like compounds and some other Mg, Ca, and Al hydroxide and carbonate minerals.A combination of X-ray diffraction (XRD) and vibrational spectroscopy techniques, including mid-infrared (IR), Raman, near-infrared (NIR), and UV-Visible, have been used to characterise bauxite residue and seawater neutralised bauxite residue. Both the ferrous (Fe2+) and ferric (Fe3+) ions within bauxite residue can be identified by their characteristic NIR bands, where ferrous ions produce a strong absorption band at around 9000 cm-1, while ferric ions produce two strong bands at 25000 and 14300 cm-1. The presence of adsorbed carbonate and hydroxide anions can be identified at around 5200 and 7000 cm-1, respectively, attributed to the 2nd overtone of the 1st fundamental overtones observed in the mid-IR spectra. The complex bands in the Raman and mid-IR spectra around 3500 cm-1 are assigned to the OH stretching vibrations of the various oxides present in bauxite residue, and water. The combination of carbonate and hydroxyl units and their fundamental overtones give rise to many of the features of the NIR spectra.