People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Nielsen, Line Hagner
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 20233D-printed Radiopaque Microdevices with Enhanced Mucoadhesive Geometry for Oral Drug Deliverycitations
- 2019Artificial gut-on-a-disc platform to evaluate ph sensitive coatings of oral drug delivery devices
- 2019Where Is the Drug? Quantitative 3D Distribution Analyses of Confined Drug-Loaded Polymer Matricescitations
- 2019Evaluation of the solid state form of tadalafil in sub-micron thin films using nanomechanical infrared spectroscopycitations
- 2018Evaluation of the effects of spray drying parameters for producing cubosome powder precursorscitations
- 2018Evaluation of the effects of spray drying parameters for producing cubosome powder precursorscitations
- 2017Microcontainers as an oral delivery system for spray dried cubosomes containing ovalbumincitations
- 2016Triple co-culture cell model as an in vitro model for oral particulate vaccine systems
- 2015Stabilisation of amorphous furosemide increases the oral drug bioavailability in ratscitations
- 2013Spray coating of microcontainers with eudragit using ferromagnetic shadow masks for controlled oral release of poorly water soluble drugs.
- 2013Preparation of an amorphous sodium furosemide salt improves solubility and dissolution rate and leads to a faster Tmax after oral dosing to ratscitations
- 2013Biodegradable microcontainers as an oral drug delivery system for poorly soluble drugs.
Places of action
Organizations | Location | People |
---|
document
Spray coating of microcontainers with eudragit using ferromagnetic shadow masks for controlled oral release of poorly water soluble drugs.
Abstract
PURPOSE: To form a lid of Eudragit S-100 or L-100 on the cavity of drug-filled microcontainers (micro scale oral drug delivery devices) by utilizing ferromagnetic masks. Furthermore, investigations of drug release in biorelevant gastric and intestinal media were evaluated for testing the ability of controlling the drug release of poorly soluble drugs from the microcontainers.<br/>METHODS: Cylindrical microcontainers (inner diameter of 240 μm) were fabricated in SU-8, using photolithography on silicon substrate. The microcontainers were filled with either cinnarizine (weak base) or amorphous furosemide salt (weak acid). The cavity of the drug-filled microcontainers were spray coated with a 2 wt% solution of either Eudragit S-100 (soluble below pH 5) or Eudragit L-100 (soluble above pH 6) in isopropanol. The spray coating process was performed using ferromagnetic shadow masks (380 μm) allowing for magnetic clamping to the substrate and therefore precise deposition of the polymer on the microcontainers to form a lid. The release of cinnarizine and amorphous furosemide salt from the coated microcontainers was performed in fasted biorelevant gastric (pH 1.6) and intestinal media (pH 6.5), respectively.<br/>RESULTS: By use of the ferromagnetic shadow masks it was possible to deposit the Eudragit precisely and therefore possible to form a lid of the cavity of the microcontainers. The thickness of the Eudragit layer on the cavity of the microcontainers was approximately 8-10 μm for both types of Eudragit. It was possible to control the drug release of cinnarizine by using Eudragit L-100 in the gastric medium and also possible to control the release of amorphous furosemide salt by the Eudragit E-100 coating in the intestinal medium.<br/>CONCLUSIONS: The ferromagnetic shadow masks made it possible to deposit a lid of Eudragit on the cavity of the microcontainers and this is important in terms of utilizing the microcontainers as an oral drug delivery system as the drug release can be controlled.