People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Schmid, Silvan
TU Wien
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2019Thin Film Analysis by Nanomechanical Infrared Spectroscopycitations
- 2016Nonlinear optomechanical measurement of mechanical motioncitations
- 2014Single-layer graphene on silicon nitride micromembrane resonatorscitations
- 2014Single-layer graphene on silicon nitride micromembrane resonatorscitations
- 2014Micromechanical String Resonators: Analytical Tool for Thermal Characterization of Polymerscitations
- 2013Optical detection of radio waves through a nanomechanical transducer
- 2011Biodegradable micromechanical sensors
- 2011Fabrication and characterization of SRN/SU-8 bimorph cantilevers for temperature sensingcitations
- 2011Superparamagnetic photocurable nanocomposite for the fabrication of microcantileverscitations
Places of action
Organizations | Location | People |
---|
conferencepaper
Biodegradable micromechanical sensors
Abstract
The development of biopolymers for food packaging, medical engineering or drug delivery is a growing field of research [1]. At the same time, the interest in methods for detailed analysis of biopolymers is increasing. Micromechanical sensors are versatile tools for the characterization of mechanical and thermal properties of polymers. For example, measurements of the resonance frequency of cantilevers were used to characterize thin polymer coatings in various environmental conditions [2]. Also, the influence of humidity on the Young’s modulus of SU-8 was evaluated [3]. However, introduction of biopolymers to microfabrication is challenging, as these polymers are affected by common processes such as photolithography or wet etching. Here, we present two methods for fabrication of biodegradable micromechanical sensors. First, we fabricated bulk biopolymer microcantilevers using nanoimprint lithography (NIL). Second, we used spray-coating to deposit thin biodegradable films on microcantilevers. Both approaches allowed the determination of the Young’s modulus of the biopolymer. Furthermore, biodegradation by enzymes was investigated.