People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Wittemann, Florian
Karlsruhe Institute of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (20/20 displayed)
- 2024Anisotropic warpage prediction of injection molded parts with phenolic matrix
- 2024Initial stack placement strategies for carbon fiber- reinforced sheet molding compound (C-SMC)
- 2024Modeling Approach for Reactive Injection Molding of Polydisperse Suspensions with Recycled Thermoset Compositescitations
- 2023Numerical Study on Uncertainty Effects in Injection Molding
- 2023Fiber breakage modeling based on hydrodynamic forces in macroscopic process simulations
- 2022Fiber breakage modeling based on hydrodynamic forces in macroscopic process simulations
- 2022Fiber-dependent injection molding simulation of discontinuous reinforced polymers
- 2022Fiber-dependent injection molding simulation of discontinuous reinforced polymers
- 2022Influence of fiber breakage on flow behavior in fiber length- and orientation-dependent injection molding simulationscitations
- 2021Theoretical approximation of hydrodynamic and fiber-fiber interaction forces for macroscopic simulations of polymer flow process with fiber orientation tensorscitations
- 2019Simulation of Reinforced Reactive Injection Molding with the Finite Volume Method
- 2019Using openfoam for simulation of reactive injection molding as a non-isothermal compressible multiphase flow
- 2019Simulation of Discontinuous Fiber Reinforced Composites along the CAE-Chain
- 2019Injection Molding Simulation with Fiber Length Dependent Flow Modelling
- 2018Simulation of Reinforced Reactive Injection Molding with the Finite Volume Methodcitations
- 2018Evaluation of an Integral Injection Molded Housing for High Power Density Synchronous Machines with Concentrated Single-Tooth Windingcitations
- 2018Using openfoam for simulation of reactive injection molding as a non-isothermal compressible multiphase flow
- 2018Simulation of Discontinuous Fiber Reinforced Composites along the CAE-Chain
- 2018Simulation of reinforced reactive injection molding with the finite volume methodcitations
- 2017Modeling of the non-isothermal crystallization kinetics of polyamide 6 composites during thermoformingcitations
Places of action
Organizations | Location | People |
---|
document
Simulation of Discontinuous Fiber Reinforced Composites along the CAE-Chain
Abstract
The manufacturing process of fiber reinforced composites with polymer matrix significantly influences the mechanical properties of the final composite structure. Therefore, reliable process simulation is crucial to predict the process behavior and relevant process effects. Virtual simulation of the complete CAE-Chain, including process and structural simulation, is thus highly important for the composite manufacturing industry for creating high quality and design optimized parts. In this presentation the development of a discontinuous fiber reinforced lightweight composite part along the CAE-Chain is demonstrated. The geometry is customized, with results of process and structural simulations under consideration of process conditions and mechanical load. The development is based on the MMP approach (combined consideration of methods, materials and processes) in order to ensure holistic product development for lightweight and high-performance fiber composite components.