People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Wittemann, Florian
Karlsruhe Institute of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (20/20 displayed)
- 2024Anisotropic warpage prediction of injection molded parts with phenolic matrix
- 2024Initial stack placement strategies for carbon fiber- reinforced sheet molding compound (C-SMC)
- 2024Modeling Approach for Reactive Injection Molding of Polydisperse Suspensions with Recycled Thermoset Compositescitations
- 2023Numerical Study on Uncertainty Effects in Injection Molding
- 2023Fiber breakage modeling based on hydrodynamic forces in macroscopic process simulations
- 2022Fiber breakage modeling based on hydrodynamic forces in macroscopic process simulations
- 2022Fiber-dependent injection molding simulation of discontinuous reinforced polymers
- 2022Fiber-dependent injection molding simulation of discontinuous reinforced polymers
- 2022Influence of fiber breakage on flow behavior in fiber length- and orientation-dependent injection molding simulationscitations
- 2021Theoretical approximation of hydrodynamic and fiber-fiber interaction forces for macroscopic simulations of polymer flow process with fiber orientation tensorscitations
- 2019Simulation of Reinforced Reactive Injection Molding with the Finite Volume Method
- 2019Using openfoam for simulation of reactive injection molding as a non-isothermal compressible multiphase flow
- 2019Simulation of Discontinuous Fiber Reinforced Composites along the CAE-Chain
- 2019Injection Molding Simulation with Fiber Length Dependent Flow Modelling
- 2018Simulation of Reinforced Reactive Injection Molding with the Finite Volume Methodcitations
- 2018Evaluation of an Integral Injection Molded Housing for High Power Density Synchronous Machines with Concentrated Single-Tooth Windingcitations
- 2018Using openfoam for simulation of reactive injection molding as a non-isothermal compressible multiphase flow
- 2018Simulation of Discontinuous Fiber Reinforced Composites along the CAE-Chain
- 2018Simulation of reinforced reactive injection molding with the finite volume methodcitations
- 2017Modeling of the non-isothermal crystallization kinetics of polyamide 6 composites during thermoformingcitations
Places of action
Organizations | Location | People |
---|
document
Using openfoam for simulation of reactive injection molding as a non-isothermal compressible multiphase flow
Abstract
Reactive injection molding (RIM) is one of the most important processes for large-scale production of discontinuous fiber reinforced composites with thermoset matrices. The process conditions control the final part performance. To achieve the quality standards and the economic demands of automotive industry, it is crucial to thoroughly design the process by reliable process simulation. State of the art simulation software focusses on thermoplastic injection molding and uses the same models for thermoplastic and reactive injection molding. However, thermosets reveal a complex and different flow behavior during form filling, compared to thermoplastic composites. Therefore, the present study uses a new RIM-focused solver, which is based on the Finite Volume Method (FVM) and uses well-known viscosity and curing kinetic models for thermoset materials. Non-isothermal, compressible multiphase flows are simulated with phase-dependent boundary conditions, separating air and polymer, to enable mold filling and predicting the final fiber orientation distribution. The FVM simulations are conducted with the open source CFD toolbox OpenFOAM. The solver is compared to commercial FEM software and experimental pressure measurements at different points during mold filling. The simulation results of the RIM-focused solver agree well with the experiments, revealing the high potential of FVM for simulation of reactive injection molding. The solver is compared to commercial FEM software and experimental pressure measurements at different points during mold filling. The simulation results of the RIM-focused solver agree well with the experiments, revealing the high potential of FVM for simulation of reactive injection molding.