People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Lines, David
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2023Single-bit coded excitation for lightweight phase coherence imaging
- 2023In-process non-destructive evaluation of metal additive manufactured components at build using ultrasound and eddy-current approachescitations
- 2023In-process non-destructive evaluation of metal additive manufactured components at build using ultrasound and eddy-current approachescitations
- 2023Phased array inspection of narrow-gap weld LOSWF defects for in-process weld inspection
- 2022Towards ultrasound-driven, in-process monitoring & control of GTA welding of multi-pass welds for defect detection & prevention
- 2022Collaborative robotic wire + arc additive manufacture and sensor-enabled in-process ultrasonic non-destructive evaluationcitations
- 2022Investigating ultrasound wave propagation through the coupling medium and non-flat surface of wire + arc additive manufactured components inspected by a PAUT roller-probe
- 2022Automated multi-modal in-process non-destructive evaluation of wire + arc additive manufacturing
- 2022Towards real-time ultrasound driven inspection and control of GTA welding processes for high-value manufacturing
- 2022Dual-tandem phased array inspection for imaging near-vertical defects in narrow gap welds
- 2022Targeted eddy current inspection based on ultrasonic feature guided wave screening of resistance seam welds
- 2022In-process non-destructive evaluation of wire + arc additive manufacture components using ultrasound high-temperature dry-coupled roller-probe
- 2022Collaborative robotic Wire + Arc Additive Manufacture and sensor-enabled in-process ultrasonic Non-Destructive Evaluationcitations
- 2022Automated real time eddy current array inspection of nuclear assetscitations
- 2020In-process calibration of a non-destructive testing system used for in-process inspection of multi-pass weldingcitations
- 2020Laser-assisted surface adaptive ultrasound (SAUL) inspection of samples with complex surface profiles using a phased array roller-probe
- 2019Ultrasonic phased array inspection of wire plus arc additive manufacture samples using conventional and total focusing method imaging approachescitations
- 2019Ultrasonic phased array inspection of a Wire + Arc Additive Manufactured (WAAM) sample with intentionally embedded defectscitations
Places of action
Organizations | Location | People |
---|
document
Investigating ultrasound wave propagation through the coupling medium and non-flat surface of wire + arc additive manufactured components inspected by a PAUT roller-probe
Abstract
Additive manufacturing (AM) has found extensive applications in the design and development industries in the recent years, ranging from aerospace and defence to nuclear sector, for its cost effectiveness, reduced material wastages and better accuracy offered for manufacturing components with complex geometries.In particular, Wire + arc AM (WAAM) is preferred for its high deposition rates, offering reduced lead times for large-scale components manufacturing. However, the quality of a WAAM component is affected by the emergence of inherent defects, mainly lack of fusion and keyhole defects that arise from the high temperature and pressure of the tungsten arc, and contaminations. Therefore, in addition to a high throughput WAAM process, a robust non-destructive evaluation is required to ensure better structural integrity of the component. In this regard, an integrated non-destructive technique can provide early detection of structural discrepancies in the WAAM, hence, preventing component from scrappage and minimizing rework.<br/>Phased-array ultrasonic testing (PAUT) is widely used for volumetric non-destructive inspection of metallic components. The method is well developed where standard tools for numerous experimental conditions have been successfully implemented over the years. A high temperature PAUT roller probe design, with a flexible tire material, has proven to provide dry coupled, in-process inspection of WAAM. The polymeric tire material of the probe is flexible to adapt well to the as-built, non-planar surface of WAAM and can resist the high temperature of the process. However, acoustic coupling between the probe and sample is achieved by applying a high compressive force to the roller probe in a direction normal to the WAAM surface, in the order of 150 N. This creates a nonuniform density profile of coupling medium, maintaining a highly compressed zone in the centre of probe, and reducing toward corners according to the curved surface of WAAM. Consequently, the acoustic velocity in the coupling medium does not remain constant throughout the contact area which gives a variable acoustic refraction along the WAAM surface. For example, as suggested by our measurements, acoustic velocity in the coupling medium under varying compressive force is demonstrated in Figure 1.<br/>UT waves delay and sum (DAS) image reconstruction requires accurate ray racing, thereby relying on correct wave refraction in a multi-layer structure. In fact, when the accuracy of ray tracing for ultrasonic image reconstruction is compromised, the incorrectly delayed and summed acoustic waves reduce the accuracy of shape, location and orientation of defects and their resolution in the obtained images. In this work a mock-up sample, with a surface profile similar to that of a WAAM containing side drilled holes placed at varying distance from the centre of the sample, will be investigated. The dimensions and signal-to-noise ratio of the defects will be analysed in total focusing method (TFM) images obtained with and without accounting for the velocity profile of the coupling medium.