Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Tartar, J.

  • Google
  • 1
  • 4
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2005Radiative Transfer Modeling of the Extended Dust Shell of AFGL 618citations

Places of action

Chart of shared publication
Meixner, Margaret
1 / 12 shared
Speck, A.
1 / 1 shared
Nenkova, M.
1 / 1 shared
Elitzur, M.
1 / 1 shared
Chart of publication period
2005

Co-Authors (by relevance)

  • Meixner, Margaret
  • Speck, A.
  • Nenkova, M.
  • Elitzur, M.
OrganizationsLocationPeople

document

Radiative Transfer Modeling of the Extended Dust Shell of AFGL 618

  • Meixner, Margaret
  • Tartar, J.
  • Speck, A.
  • Nenkova, M.
  • Elitzur, M.
Abstract

AFGL 618 is a carbon-rich post AGB star/protoplanetary nebula (PPN), and is surrounded by extremely large circumstellar dust shells, containing the fossil record of its AGB mass loss. This dust shell ahs been observed at 120μ m and 180μ m by ISOPHT. We present results of radiative-transfer (RT) modeling of these dust shells, using the 1-d RT code DUSTY. While AFGL 618 is clearly axisymmetric close to the central star, this axisymmetry is contained well within the PSF of the ISO FIR observation. Our models are intended to determine several parameters AFGL 618 which are not currently wll constrained; among tehse being distance, gross dust distribution, stellar temperature, inner dust shell radius, dust grain size distribution, and dust grain composition. While there is some degeneracy within the models providing good fits to the data, some general results have emerged. We found that the optical depth of the dust shell in the mid-IR (τ <SUB>9.7</SUB>μ m) is between 3 and 7. Furthermore, we have found that in order for the modeled brightnesses to match the observational data at both wavelengths (for the central region), it is necessary to include a considerable amount of crystalline dust (graphite and SiC) into the circumstellar shell in addition to amorphous carbon. Finally we show that the radial density distributions needed to match the observations are indicative of either constant mass-loss rate throughout the histor of the shell, or increasing mass-loss rates for the last few hundred years of the AGB. This increasing mass loss is interpreted as the superwind phase....

Topics
  • density
  • impedance spectroscopy
  • amorphous
  • Carbon
  • grain
  • grain size
  • phase