Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Minty, Ross F.

  • Google
  • 7
  • 3
  • 49

University of Strathclyde

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (7/7 displayed)

  • 2023The dependence of interfacial shear strength on temperature and matrix chemistry in glass fibre epoxy composites8citations
  • 2022The influence of temperature and matrix chemistry on interfacial shear strength in glass fibre epoxy compositescitations
  • 2018Are silanes the primary driver of interface strength in glass fibre composites?citations
  • 2018The influence of hardener-to-epoxy ratio on the interfacial strength in glass fibre reinforced epoxy composites41citations
  • 2018Are silanes the primary driver of interface strength in glass fiber composites? An exploration of the relationship of chemical and physical parameters in the micromechanical characterisation of the apparent interfacial strength in glass fiber compositescitations
  • 2016The role of the epoxy resincitations
  • 2015The role of the epoxy resincitations

Places of action

Chart of shared publication
Yang, Liu
6 / 36 shared
Thomason, James L.
7 / 27 shared
Petersen, Helga
1 / 1 shared
Chart of publication period
2023
2022
2018
2016
2015

Co-Authors (by relevance)

  • Yang, Liu
  • Thomason, James L.
  • Petersen, Helga
OrganizationsLocationPeople

conferencepaper

The influence of temperature and matrix chemistry on interfacial shear strength in glass fibre epoxy composites

  • Yang, Liu
  • Thomason, James L.
  • Minty, Ross F.
Abstract

The present work focuses on further investigating the influences of the chemistry of an epoxy system and the testing temperature on the stress-transfer capability of the fibre-matrix interface in a glass fibre-reinforced composite. We discuss how the apparent interfacial shear strength (IFSS) is influenced by the hardener-to-epoxy ratio and testing temperature. The results indicated that the IFSS was strongly dependent on both matrix chemistry and testing temperature. It was observed that the IFSS showed a significant inverse dependence on testing temperature, with IFSS dropping as the temperature was increased for all ratios. Notably it was shown that once the testing temperature was raised above the glass transition temperature (Tg) that ratios possessing excess hardener had larger IFSS values. From the results presented it is hypothesized that residual radial compressive stresses at the interface are influenced by the chemistry of the matrix system and relax away at the higher testing temperatures.

Topics
  • impedance spectroscopy
  • glass
  • glass
  • strength
  • composite
  • thermogravimetry
  • glass transition temperature
  • interfacial