Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Sinebe, J. E.

  • Google
  • 1
  • 5
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Experimental study of Nano-Lubricant on temperature reduction and distribution during machining of Al-Si-Mg composite using deform 3D finite element methodcitations

Places of action

Chart of shared publication
Adeoye, A. O. M.
1 / 5 shared
Akinlabi, Esther Titilayo
1 / 235 shared
Akujieze, C. T.
1 / 1 shared
Tartibu, L. K.
1 / 1 shared
Okokpujie, I. P.
1 / 2 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Adeoye, A. O. M.
  • Akinlabi, Esther Titilayo
  • Akujieze, C. T.
  • Tartibu, L. K.
  • Okokpujie, I. P.
OrganizationsLocationPeople

article

Experimental study of Nano-Lubricant on temperature reduction and distribution during machining of Al-Si-Mg composite using deform 3D finite element method

  • Adeoye, A. O. M.
  • Akinlabi, Esther Titilayo
  • Akujieze, C. T.
  • Tartibu, L. K.
  • Sinebe, J. E.
  • Okokpujie, I. P.
Abstract

<p>The temperature reduction process is a vital part of the manufacturing process. High-temperature generation during machining operation leads to thermal deformation on the developed component, affecting the operation life span of the component. The computer numerical machining process is one of the recent technology employed for the automatic manufacturing process. These operations are plagued with temperature during the machining of transforming hard raw materials to replace mechanical parts. Therefore, cutting fluid for lubrication and as cooling agents has become a necessary part of this process to reduce cost and manufacturing time. Thus, this study investigated the effect of mineral oil-based-Multi-walled carbon nanofluid (MWCNTs) compared to pure mineral oil in the turning of aluminum-silicon magnesium metal matrix composite (AlSiMg) on temperature reduction and distribution. The nanofluid was prepared with 0.4g of MWCNT to 1 liter of mineral oil. The study employed the energy dispersive spectrometer to obtain the chemical composition of the developed nanofluid. The turning experiment was done using Taguchi L9 orthogonal array to obtain the best possible results. Furthermore, Finite element software DEFORM 3D v11.0 using a lagrangian incremental approach was employed to simulate chip formation and temperature distribution on the workpiece and to study the effects of the machining parameters on the temperature distribution. The experiment results showed a significant reduction of 11.9% in temperature when machining with nanofluid compared to pure mineral oil. The simulation results showed that as the cutting speed and feed rate increase, the temperature increases. The minimum temperature via the DEFORM 3D Finite Element Model simulation was achieved at spindle speed 870 rpm, feed rate 2 mm/rev, and depth-of-cut 1 mm. In conclusion, the study recommends that the manufacturing industry employ the optimized machining parameters during the turning of AlSiMg metal matrix composite for a sustainable machining process.</p>

Topics
  • impedance spectroscopy
  • mineral
  • Carbon
  • experiment
  • simulation
  • Magnesium
  • Magnesium
  • aluminium
  • composite
  • chemical composition
  • Silicon