Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Dey, Maitreyee

  • Google
  • 3
  • 3
  • 21

London Metropolitan University

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2022High-resolution electrical measurement data processingcitations
  • 2021Solar farm voltage anomaly detection using high-resolution μ PMU data-driven unsupervised machine learning21citations
  • 2020Data-driven remote fault detection and diagnosis of HVAC terminal units using machine learning techniquescitations

Places of action

Chart of shared publication
Rana, Soumya Prakash
2 / 2 shared
Dudley-Mcevoy, Sandra
1 / 3 shared
Simmons, Clarke V.
1 / 1 shared
Chart of publication period
2022
2021
2020

Co-Authors (by relevance)

  • Rana, Soumya Prakash
  • Dudley-Mcevoy, Sandra
  • Simmons, Clarke V.
OrganizationsLocationPeople

patent

High-resolution electrical measurement data processing

  • Rana, Soumya Prakash
  • Dey, Maitreyee
Abstract

The invention provides methods and apparatus for processing of measurement data related to an electrical power grid or other electrical apparatus by using machine learning techniques and providing anomalous event detection from the electrical measurement data.Stopping climate change motivates implementation of renewable energy sources such as wind and solar with much smaller carbon footprints than non-renewable sources. However, the behaviour of renewable sources may be irregular and can bring challenges for consistent operation in power distribution systems. Utility-scale (>1 MW) solar farm owners may suffer from significant plant failure rates, reduces equipment life, unplanned outages, and replacement overheads. These problems can be countered through better condition monitoring data collection and knowledge discovery to automatically understand issues and predict problems before they occur.Monitoring tools can provide more granular and higher accuracy data capture together with precise timing information. However, there can be problems in the capacity to process the data and detect anomalous behaviour, faults and failure modes.

Topics
  • Carbon
  • machine learning