People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Youssoufi, Moulay Saïd El
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2021Characterization of the expansion due to the delayed ettringite formation at the cement paste-aggregate interfacecitations
- 2020Identification of a cohesive zone model for cement paste-aggregate interface in a shear testcitations
- 2020Leaching effect on concrete – Part II: mechanical behaviour evolution of ITZ during leaching at the local scale
- 2020Caractérisation à l’échelle locale de la dégradation de l’interphase ciment-granulat par un traitement hygrothermique
- 2020Leaching effect on concrete -part I: characterization of chemical degradation evolution of ITZ
- 2018Leaching effect on mechanical properties of cement-aggregate interfacecitations
- 2018Experimental characterization of mechanical properties of the cement-aggregate interface in concretecitations
- 2018Caractérisation de l'expansion due à la réaction sulfatique interne à l'échelle de l'interphase pâte de ciment-granulat
- 2018Caractérisation expérimentale des propriétés chimio-mécaniques de l'interphase pâte de ciment-granulat par MEB et nano-indentation
- 2016Characterization of behavior and cracking of a cement paste confined between spherical aggregate particlescitations
- 2007Shear strength of unsaturated soils: experiments, DEM simulations, and micromechanical analysis
Places of action
Organizations | Location | People |
---|
article
Leaching effect on concrete – Part II: mechanical behaviour evolution of ITZ during leaching at the local scale
Abstract
Cement paste/aggregate bond influences durability of concrete subjected to leaching, following the existence of a particular, more vulnerable zone in cement paste, adjacent to aggregates-the interfacial transition zone (ITZ). In order to assess the mechanical behaviour of concrete at local scale of cement paste/aggregate bond, tensile tests were carried out on cement paste and cement paste/aggregate composite samples. The relationship between chemical degradation and mechanical properties (Young's modulus and tensile strength) was expressed through the notion of chemical degradation rate. Other aspects discussed, such as the leaching kinetics, chemical dissolution and cracking were used to highlight the origin of the loss of mechanical properties of the cement paste and of the cement paste/aggregate bond. Following an important dissolution within ITZ, a total loss of adhesion between cement paste and aggregate following leaching occurs gradually. Concerning the cement paste, it undergoes a smaller decrease of Young's modulus and tensile strength compared to the composites, being also less affected by cracking. Overall, this study highlights the mechanism by which the mechanical behaviours of cement paste and cement paste/aggregate bond are affected by leaching.