Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Elshafie, A.

  • Google
  • 2
  • 2
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2012Dielectric Properties of Volcanic Material and Their Role for Assessing Rock Hardness in the Martian Subsurfacecitations
  • 2011Dielectric and Hardness Measurements of Martian Analog Rocks in Support of the WISDOM Radar on ExoMarscitations

Places of action

Chart of shared publication
Ciarletti, V.
1 / 5 shared
Clifford, S. M.
1 / 2 shared
Chart of publication period
2012
2011

Co-Authors (by relevance)

  • Ciarletti, V.
  • Clifford, S. M.
OrganizationsLocationPeople

document

Dielectric and Hardness Measurements of Martian Analog Rocks in Support of the WISDOM Radar on ExoMars

  • Ciarletti, V.
  • Clifford, S. M.
  • Elshafie, A.
Abstract

The success of the WISDOM (Water Ice and Subsurface Deposit Observation On Mars) radar in supporting the ExoMars drill to targets of opportunities and for maintaining optimal drilling capabilities is based on the complementarily of the two experiments in assessing the shallow subsurface physical properties. The dielectric properties as inverted from WISDOM wide-band ground penetrating radar radargrams, will be used to assess the ground mechanical properties as rock hardness, density and porosity which are crucial inputs for optimizing drilling operations. The main purpose of this research is to perform dielectric permittivity and hardness measurements for Martian analog rocks as a function of the Martian surface environmental parameters in an attempt to correlate between the physical and mechanical properties (i.e. dielectric constant and rock hardness) for volcanic rocks and permafrost simulating the case of the most upper layers of the Martian regolith. The implication for optimizing ExoMars drilling and sampling activities based on this correlation between the physical and mechanical properties will be discussed. We considered eight different types of volcanic rocks, for which we measured both the permittivity at the frequency band 200 to 1500 MHz and hardness over the range R= 10 to 100 using Schmidt hammer hardness tester. Based on our experimental results, the dielectric constant and hardness values ranged from (ɛ = 1.91 to 8.09) and (R = 12.8 to 68) at the density of (ρ = 0.78 to 3 gm cm<SUP>-3</SUP>) for pumice and flood basalt respectively. Dielectric constant and rock hardness are found to increase with increasing sample density which implied a direct linear correlation between dielectric constant and rock hardness. The drill penetration rate of the previously described samples is predicted and correlated to the dielectric constant. An inverse relation between dielectric constant and drill penetration rate is concluded....

Topics
  • density
  • impedance spectroscopy
  • surface
  • experiment
  • dielectric constant
  • hardness
  • porosity