Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Buttarazzi, I.

  • Google
  • 1
  • 8
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2016Cosmochemical implications of CONSERT permittivity characterization of 67P/CGcitations

Places of action

Chart of shared publication
Bonal, L.
1 / 1 shared
Herique, A.
1 / 6 shared
Levasseur-Regourd, A. C.
1 / 3 shared
Kofman, W. W.
1 / 4 shared
Zine, S.
1 / 3 shared
Beck, P.
1 / 4 shared
Quirico, E.
1 / 3 shared
Lasue, J.
1 / 3 shared
Chart of publication period
2016

Co-Authors (by relevance)

  • Bonal, L.
  • Herique, A.
  • Levasseur-Regourd, A. C.
  • Kofman, W. W.
  • Zine, S.
  • Beck, P.
  • Quirico, E.
  • Lasue, J.
OrganizationsLocationPeople

document

Cosmochemical implications of CONSERT permittivity characterization of 67P/CG

  • Bonal, L.
  • Buttarazzi, I.
  • Herique, A.
  • Levasseur-Regourd, A. C.
  • Kofman, W. W.
  • Zine, S.
  • Beck, P.
  • Quirico, E.
  • Lasue, J.
Abstract

Analysis of the propagation of the CONSERT signal throughout the small lobe of 67P/CG nucleus permitted to deduce the real part of the permittivity, at a value of 1.27± 0.05 [1]. The first interpretation of this value using the dielectric properties of mixtures of ices (H2O, CO2), dusts and porosity, led to the conclusion that the comet porosity ranges between 75 - 85%. In addition, the dust to ice ratio was found to range between 0.4-2.6 and the permittivity of dust (including 30% of porosity) was determined to be lower than 2.9. This last value corresponds to a permittivity lower than 4 for a material without any porosity. This paper is intended to refine the dust permittivity estimate by taking into account the updated values of nucleus densities and dust/ice ratio, and to provide further insights into the nature of the constituents of comet 67P/CG. We adopted a systematic approach: determination of the dust permittivity as a function of the Ice / Dust and Vacuum (i.e. porosity) volume fraction and comparison with the permittivity of meteoritic, mineral and organic material from literature and laboratory measurements. Then different composition models of the nuclei corresponding to cosmochemical endmembers of 67P/CG dust are tested. For each of these models the location in the I/D/V diagram is calculated based on available dielectric measurements, and confronted to the locus of 67P/CG. The number of compliant models is small and the cosmochemical implications of each are discussed to conclude on a preferred model [2]. An important fraction of carbonaceous material is required in the dust in order to match CONSERT permittivity observations, establishing that comets represent a massive carbon reservoir. [1] Kofman et al., Science, 349, 6247, aaa0639, 2015. [2] Herique et al., MNRAS, submitted, 2016....

Topics
  • impedance spectroscopy
  • mineral
  • Carbon
  • porosity
  • ion chromatography