People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Brackx, Emmanuelle
CEA Marcoule
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2023Corium materials characterizations through electron microscopy and X-ray diffraction
- 2023Study of the Crystallization in a Glass-Ceramic Sealcitations
- 2023Study of the Crystallization in a Glass-Ceramic Sealcitations
- 2022CORIUM MATERIAL ANALYSIS BY EPMA AND DIFFRACTIONS METHODS
- 2021Chemical interaction between uranium dioxide, boron carbide and stainless steel at 1900 °C — Application to a severe accident scenario in sodium cooled fast reactorscitations
- 2019ANALYTICAL APPROACH TO MATERIALS CHARACTERISATION IN FUTURE NUCLEAR REACTORS (GENERATION IV)
- 2018Study of prototypical corium UZrO from quenching, by a multi-scale approach
- 2017Thermodynamic investigation of the Cr-O-U and Cr-O-Zr systems
- 2017molybdenum behaviour during u-al research reactor spent fuel dissolution
- 2017Quantification of hypo eutectic b-c-fe-o under severe accident condition in nuclear material by epma
- 2016Compaction of porous metal oxide microspheres a multi-scale approach
- 2016Experimental contribution to the corium thermodynamic modelling – The U–Zr–Al–Ca–Si–O systemcitations
- 2016quantification by epma of glass for nuclear application
- 2015Experimental investigation and thermodynamic modelling of the in-vessel corium for severe accident studies in PWR reactors
- 2015Experimental investigation and thermodynamic modelling of the in-vessel corium for severe accident studies in PWR reactors
- 2015Experimental study and thermodynamic modelling of corium mixtures Application to severe accidents in Pressurized Water Reactors
- 2013Analytical approach to usic measurement by electron probe microanalysis
- 2011Quantification of boron by epma in nuclear glass
Places of action
Organizations | Location | People |
---|
document
Experimental investigation and thermodynamic modelling of the in-vessel corium for severe accident studies in PWR reactors
Abstract
During a severe accident in a PWR reactor, the oxide nuclear fuel (UO2 or MOX) reacts at high temperature with the zirconium alloy clad and the steel vessel to form a partially or fully molten mixture so-calledin-vessel corium . In such a case, the corium forms a pool in the bottom of the vessel, constituted of two liquid phases, metallic and oxide. The formation of such a configuration of the corium pool is due to the existence of a miscibility gap in the liquid state. The fractions and compositions of these liquid phases have to be well known in order to model the thermal hydraulic properties of the pool. The aim of the present work is to investigate experimentally the thermodynamic properties of the U-Zr-O-Fe system representative for the in-vessel corium to improve the thermodynamic modelling using the Calphad method. Laser heating techniques as well as heat treatments are used to measure solid/liquid transition temperatures and to highlight the miscibility gap in the liquid state. Experimental data are used to assess the thermodynamic properties of this key system. Both experimental and theoretical results will be presented.