People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Brackx, Emmanuelle
CEA Marcoule
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2023Corium materials characterizations through electron microscopy and X-ray diffraction
- 2023Study of the Crystallization in a Glass-Ceramic Sealcitations
- 2023Study of the Crystallization in a Glass-Ceramic Sealcitations
- 2022CORIUM MATERIAL ANALYSIS BY EPMA AND DIFFRACTIONS METHODS
- 2021Chemical interaction between uranium dioxide, boron carbide and stainless steel at 1900 °C — Application to a severe accident scenario in sodium cooled fast reactorscitations
- 2019ANALYTICAL APPROACH TO MATERIALS CHARACTERISATION IN FUTURE NUCLEAR REACTORS (GENERATION IV)
- 2018Study of prototypical corium UZrO from quenching, by a multi-scale approach
- 2017Thermodynamic investigation of the Cr-O-U and Cr-O-Zr systems
- 2017molybdenum behaviour during u-al research reactor spent fuel dissolution
- 2017Quantification of hypo eutectic b-c-fe-o under severe accident condition in nuclear material by epma
- 2016Compaction of porous metal oxide microspheres a multi-scale approach
- 2016Experimental contribution to the corium thermodynamic modelling – The U–Zr–Al–Ca–Si–O systemcitations
- 2016quantification by epma of glass for nuclear application
- 2015Experimental investigation and thermodynamic modelling of the in-vessel corium for severe accident studies in PWR reactors
- 2015Experimental investigation and thermodynamic modelling of the in-vessel corium for severe accident studies in PWR reactors
- 2015Experimental study and thermodynamic modelling of corium mixtures Application to severe accidents in Pressurized Water Reactors
- 2013Analytical approach to usic measurement by electron probe microanalysis
- 2011Quantification of boron by epma in nuclear glass
Places of action
Organizations | Location | People |
---|
conferencepaper
Thermodynamic investigation of the Cr-O-U and Cr-O-Zr systems
Abstract
International audience ; During severe accidents in nuclear reactors, the core is partly melted. With time the temperature increases and more parts of the reactor are melted creating a very complex mixture, including many elements. This mixture is often referred to as corium. If the reaction is allowed to go on long enough, the vessel can brake causing the corium to flow out onto the floor creating ex-vessel corium. One of the aims of the TAF-ID project [1] is to be able to predict the thermodynamic properties of the corium to aid in the prevention of severe accidents. One of the elements whose behaviour in the corium is not well known is chromium. Chromium can be introduced to the system through stainless steel that can be used both for the vessel itself and the cladding of the control rods. In this work two of the key systems involving chromium, i.e. Cr-O-U and Cr-O-Zr, have been studied using the Calphad method. New experimental work has also been performed using equilibrated alloys at 1600 and 1800 C.