Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Brackx, Emmanuelle

  • Google
  • 18
  • 67
  • 21

CEA Marcoule

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (18/18 displayed)

  • 2023Corium materials characterizations through electron microscopy and X-ray diffractioncitations
  • 2023Study of the Crystallization in a Glass-Ceramic Seal1citations
  • 2023Study of the Crystallization in a Glass-Ceramic Seal1citations
  • 2022CORIUM MATERIAL ANALYSIS BY EPMA AND DIFFRACTIONS METHODScitations
  • 2021Chemical interaction between uranium dioxide, boron carbide and stainless steel at 1900 °C — Application to a severe accident scenario in sodium cooled fast reactors7citations
  • 2019ANALYTICAL APPROACH TO MATERIALS CHARACTERISATION IN FUTURE NUCLEAR REACTORS (GENERATION IV)citations
  • 2018Study of prototypical corium UZrO from quenching, by a multi-scale approachcitations
  • 2017Thermodynamic investigation of the Cr-O-U and Cr-O-Zr systemscitations
  • 2017molybdenum behaviour during u-al research reactor spent fuel dissolutioncitations
  • 2017Quantification of hypo eutectic b-c-fe-o under severe accident condition in nuclear material by epmacitations
  • 2016Compaction of porous metal oxide microspheres a multi-scale approachcitations
  • 2016Experimental contribution to the corium thermodynamic modelling – The U–Zr–Al–Ca–Si–O system12citations
  • 2016quantification by epma of glass for nuclear applicationcitations
  • 2015Experimental investigation and thermodynamic modelling of the in-vessel corium for severe accident studies in PWR reactorscitations
  • 2015Experimental investigation and thermodynamic modelling of the in-vessel corium for severe accident studies in PWR reactorscitations
  • 2015Experimental study and thermodynamic modelling of corium mixtures Application to severe accidents in Pressurized Water Reactorscitations
  • 2013Analytical approach to usic measurement by electron probe microanalysiscitations
  • 2011Quantification of boron by epma in nuclear glasscitations

Places of action

Chart of shared publication
Piluso, P.
4 / 11 shared
Hikeuchi, Hirotomo
1 / 1 shared
Jizzini, Mohamed
2 / 2 shared
Guinebretière, René
2 / 18 shared
Regnier, Elise
2 / 14 shared
Laplace, Annabelle
1 / 7 shared
Vallat, Charlène
1 / 1 shared
Schintu, Lilou
2 / 5 shared
Vulliez, Karl
2 / 11 shared
Begos, Jean-Gabriel
2 / 9 shared
Moles, Rémi
2 / 8 shared
Vallat, Charlene
1 / 5 shared
Laplace-Ploquin, Annabelle
1 / 14 shared
Quaini, Andrea
3 / 9 shared
Guéneau, Christine
3 / 5 shared
Bonnet, Christophe
1 / 3 shared
Touzin, Matthieu
1 / 18 shared
Tougait, Olivier
1 / 28 shared
Garrigue, Mathieu
2 / 2 shared
Alpettaz, Thierry
2 / 3 shared
Dugne, Olivier
3 / 5 shared
Chatain, S.
2 / 5 shared
Domenger, R.
5 / 5 shared
Guéneau, C.
3 / 16 shared
Excoffier, Emmanuel
2 / 2 shared
Roger, Julien
1 / 3 shared
Valette, Romain
1 / 2 shared
David, Cedric
1 / 1 shared
Varraut, Rémi
1 / 1 shared
Domenger, Renaud
2 / 2 shared
Bonnaillie, P.
1 / 12 shared
Lindahl, B.-B.
1 / 1 shared
Poissonnet, S.
1 / 13 shared
Alpettaz, T.
4 / 12 shared
Gossé, S.
4 / 16 shared
Sans, D.
1 / 2 shared
Valery, Jf.
1 / 2 shared
Excoffier, E.
3 / 4 shared
Hérès, X.
1 / 1 shared
Bertrand, M.
1 / 6 shared
Eysseric, C.
1 / 2 shared
David, C.
1 / 12 shared
Ikeuchi, H.
1 / 1 shared
Bayle, J.-P.
1 / 4 shared
Martin, Cl.
1 / 1 shared
Delahaye, T.
1 / 4 shared
Remy, E.
1 / 4 shared
Parant, P.
1 / 3 shared
Picart, S.
1 / 4 shared
Gossé, Stéphane
1 / 11 shared
Chocard, Anne
1 / 1 shared
Hodaj, Fiqiri
1 / 14 shared
Cabie, M.
1 / 3 shared
Nonnet, H.
1 / 2 shared
Dugne, O.
1 / 3 shared
Hombourger, C.
1 / 4 shared
Manara, D.
3 / 11 shared
Hodaj, F.
3 / 22 shared
Lugrin, E. Lizon A.
1 / 3 shared
Gueneau, C.
2 / 13 shared
Quaini, A.
3 / 14 shared
Lizon A. Lugrin, E.
1 / 3 shared
Chocard, A.
1 / 1 shared
Merlet, Claude
2 / 2 shared
Chatain, Sylvie
1 / 13 shared
Schuller, Sophie
1 / 39 shared
Pelloux, Bertrand
1 / 1 shared
Chart of publication period
2023
2022
2021
2019
2018
2017
2016
2015
2013
2011

Co-Authors (by relevance)

  • Piluso, P.
  • Hikeuchi, Hirotomo
  • Jizzini, Mohamed
  • Guinebretière, René
  • Regnier, Elise
  • Laplace, Annabelle
  • Vallat, Charlène
  • Schintu, Lilou
  • Vulliez, Karl
  • Begos, Jean-Gabriel
  • Moles, Rémi
  • Vallat, Charlene
  • Laplace-Ploquin, Annabelle
  • Quaini, Andrea
  • Guéneau, Christine
  • Bonnet, Christophe
  • Touzin, Matthieu
  • Tougait, Olivier
  • Garrigue, Mathieu
  • Alpettaz, Thierry
  • Dugne, Olivier
  • Chatain, S.
  • Domenger, R.
  • Guéneau, C.
  • Excoffier, Emmanuel
  • Roger, Julien
  • Valette, Romain
  • David, Cedric
  • Varraut, Rémi
  • Domenger, Renaud
  • Bonnaillie, P.
  • Lindahl, B.-B.
  • Poissonnet, S.
  • Alpettaz, T.
  • Gossé, S.
  • Sans, D.
  • Valery, Jf.
  • Excoffier, E.
  • Hérès, X.
  • Bertrand, M.
  • Eysseric, C.
  • David, C.
  • Ikeuchi, H.
  • Bayle, J.-P.
  • Martin, Cl.
  • Delahaye, T.
  • Remy, E.
  • Parant, P.
  • Picart, S.
  • Gossé, Stéphane
  • Chocard, Anne
  • Hodaj, Fiqiri
  • Cabie, M.
  • Nonnet, H.
  • Dugne, O.
  • Hombourger, C.
  • Manara, D.
  • Hodaj, F.
  • Lugrin, E. Lizon A.
  • Gueneau, C.
  • Quaini, A.
  • Lizon A. Lugrin, E.
  • Chocard, A.
  • Merlet, Claude
  • Chatain, Sylvie
  • Schuller, Sophie
  • Pelloux, Bertrand
OrganizationsLocationPeople

document

Compaction of porous metal oxide microspheres a multi-scale approach

  • Bayle, J.-P.
  • Brackx, Emmanuelle
  • Martin, Cl.
  • Delahaye, T.
  • Remy, E.
  • Parant, P.
  • Picart, S.
Abstract

The future management of nuclear ultimate waste requires pellet fabrication of uranium-americium mixed oxide as Minor Actinide Bearing Blankets (MABB) for the transmutation of americium in sodium fast reactor [1]. In this context, we are investigating here the pelletization of innovative porous and spherical oxide precursors (lanthanides and/or uranium).Both experimental data and numerical simulations are used to optimize the pelletization step. The ultimate aim is to obtain, after sintering, homogeneous, dense and undistorted ceramic pellets. Oxide microsphere precursors are synthetized by the Weak Acid Resin process [2], which consists in loading beads of ion exchange resin with lanthanides and/or uranyle cations and mineralizing the metal loaded resin beads into oxide microsphere. Mechanical properties of a single microsphere were characterized experimentally by recording a series of crushing tests using a micro press incorporated into a Scanning Electron Microscope (SEM) to measure the tensile strength and follow in-situ the deformation and the evolution of local damage and cracks.These highly porous microspheres are composed of micronic porous aggregates, which are themselves made of individual particles. The Discrete Element Method (DEM) [3] was used to model these different length scales. Because the full simulation of a microsphere at the length scale of grains would involve prohibitive CPU time, the behaviour of two idealized spherical aggregates where grains are modelled as bonded spheres were first simulated. Building on these simulations, a full microsphere was then modelled as a porous assembly of spherical aggregates bonded together by solid bonds. The stiffness and strength of these individual bonds are fitted to obtain a reasonable match with the macroscopic crushing behaviour of a microsphere.The last step consists in simulating the uniaxial compaction of a number of oxide microspheres, for which rearrangement and breakage play an important role. Simulation results allow obtaining a direct relationship between applied pressures and compacted microstructures. In particular, in conjunction with experimental compaction data, simulations enable a better understanding of the effect of the applied pressure on the microstructure. This knowledge will help in determining the minimum pressure leading to a dense and homogeneous green pellet [4].[1]Warin, D. J. Nucl. Sci. Technol. 2007, 44, 410.[2]Picart, S.; Mokhtari, H.; Jobelin, I., Patent, WO 2010/034716, 2010.[3]Martin, C. L.; Bouvard, D.; Shima, S. J. Mech. Phys. Solids 2003, 51, 667.[4]Pizette, P.; Martin, C. L.; Delette, G. et al. J. Eur. Ceram. Soc. 2013, 33, 975.

Topics
  • porous
  • impedance spectroscopy
  • grain
  • scanning electron microscopy
  • simulation
  • crack
  • strength
  • Sodium
  • tensile strength
  • ceramic
  • resin
  • Lanthanide
  • sintering
  • Uranium
  • discrete element method
  • Americium