People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Brackx, Emmanuelle
CEA Marcoule
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2023Corium materials characterizations through electron microscopy and X-ray diffraction
- 2023Study of the Crystallization in a Glass-Ceramic Sealcitations
- 2023Study of the Crystallization in a Glass-Ceramic Sealcitations
- 2022CORIUM MATERIAL ANALYSIS BY EPMA AND DIFFRACTIONS METHODS
- 2021Chemical interaction between uranium dioxide, boron carbide and stainless steel at 1900 °C — Application to a severe accident scenario in sodium cooled fast reactorscitations
- 2019ANALYTICAL APPROACH TO MATERIALS CHARACTERISATION IN FUTURE NUCLEAR REACTORS (GENERATION IV)
- 2018Study of prototypical corium UZrO from quenching, by a multi-scale approach
- 2017Thermodynamic investigation of the Cr-O-U and Cr-O-Zr systems
- 2017molybdenum behaviour during u-al research reactor spent fuel dissolution
- 2017Quantification of hypo eutectic b-c-fe-o under severe accident condition in nuclear material by epma
- 2016Compaction of porous metal oxide microspheres a multi-scale approach
- 2016Experimental contribution to the corium thermodynamic modelling – The U–Zr–Al–Ca–Si–O systemcitations
- 2016quantification by epma of glass for nuclear application
- 2015Experimental investigation and thermodynamic modelling of the in-vessel corium for severe accident studies in PWR reactors
- 2015Experimental investigation and thermodynamic modelling of the in-vessel corium for severe accident studies in PWR reactors
- 2015Experimental study and thermodynamic modelling of corium mixtures Application to severe accidents in Pressurized Water Reactors
- 2013Analytical approach to usic measurement by electron probe microanalysis
- 2011Quantification of boron by epma in nuclear glass
Places of action
Organizations | Location | People |
---|
conferencepaper
Quantification of hypo eutectic b-c-fe-o under severe accident condition in nuclear material by epma
Abstract
International audience ; In the framework of a JAEA and CEA collaboration agreement, experimental and modelling studies have been focused on the investigation of the solidification behavior of a melt representative of the in-vessel conditions of Fukushima Daichi Unit 2 (1-F2). Boron was initially present in Unit 1-F2 under B4C phase (control rod). During and after the accident, boron was able to react with the different oxide/metallic melts to form complex liquid mixtures and then solid phases after cooling (possible eutectic phase). The eventual presence of boron in the solid phases is a key point for the future corium extraction operations in Fukushima Daichi 1-F2 NPP and for the material storage options, to accurately evaluate the potential risk of re-criticality whatever the configuration. This contribution focused on the interaction between boron and steel. It concerned three interactive thermal tests of boron oxide and boron carbide samples with iron, in order to identify the Fe-C-B system formed at high temperature. Small-scale experiments were carried out at CEA Cadarache (PLINIUS/VITI) to characterize and model the solidification of the melt for materials containing B-C-Fe-O elements under different conditions representative of SA scenarios. Fe, B4C, Fe2O3, and/or B2O3 powders were heat-treated in an inductive furnace with the material compositions and temperature histories determined from the hypothetical scenario of the 1-F2 accident. Characterization of the microstructure and distribution of boron in the solidified melt was then investigated using SEM/EDS with a field emission gun. The analyses of eutectic compositions in the B-C-Fe-O system were carried out by EPMA /WDS. XRD was used to allow and confirm the potential phases.EPMA/WDS was performed taking into account the chemical shift of boron and carbon in the different states of the material detected by using LPC3 and PC2 crystal. The results indicated that the final solid is separated into metal phases (Fig. 1) based on Fe with borides or ...