People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Govin, Alexandre
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (30/30 displayed)
- 2022Effect of different retarders and their combination with superplasticizer on the properties of CSA
- 2021Effect of Citric Acid and Polycarboxylate Superplasticizers (PCE) on Hydration and Rheology of Sulfoaluminate Cement
- 2019Hydration and rheology of sulfoaluminate cements (CSA) in presence of polycarboxylate superplasticizers (PCE) and citric acid
- 2019Combination of superplasticizers with hydroxypropyl guar, effect on cement-paste propertiescitations
- 2018Hydration and rheology of sulfoaluminate-belite cements (SAC) in presence of polycarboxylate superplasticizers (PCE) and citric acid
- 2018Impact of a thin coating layer of calcium aluminate and sulfoaluminate cements on algal biofouling
- 2017Experimental study of self-heating phenomenon at the reactor-scale. Safety assessment of a fixed-bed filled with torrefied wood chips
- 2017Effect of guar gum derivatives combined with superplasticizers on properties of portland cement-pastes
- 2017Combination of guar gum derivatives and superplasticizers, impact on properties of Portland cement-pastes
- 2016Experimental study of self-heating phenomena during torrefaction of spherical wood particles
- 2016Development of treatment to prevent the algal biofouling
- 2016Modification of water retention and rheological properties of fresh state cement-based mortars by guar gum derivativescitations
- 2015Impact of Guar Gum Derivatives on Properties of Freshly-Mixed Cement-Based Mortars
- 2015Effect of the Chemical Composition of Building Materials on Algal Biofouling
- 2015Modification of fresh state properties of Portland cement-based mortars by guar gum derivatives
- 2015Effect of Guar Gum Derivatives on Fresh State Properties of Portland Cement-Based Mortars
- 2014Influence of the chemical composition of mortars on algal biofouling
- 2014Lifetime durability of bio-based composites
- 2014Development of an accelerated test of fungal biodeterioration. Application to calcium aluminate cements
- 2014Synthesis and Fluidization of Wood Powders Application to biofuel production
- 2014Influence of hydroxypropylguars on rheological behavior of cement-based mortarscitations
- 2013NMR investigations of water retention mechanism by cellulose ethers in cement-based materials
- 2012Nuclear magnetic relaxation dispersion investigations of water retention mechanism by cellulose ethers in mortarscitations
- 2010Energy requirement for fine grinding of torrefied woodcitations
- 2009Effect of cellulose ethers on water retention in freshly-mixed mortars
- 2009Effect of torrefaction on grinding energy requirement for thin wood particle production
- 2009Influence of cellulose ether particle size on water retention of freshly-mixed mortars
- 2008Water transport in freshly-mixed mortars containing cellulose ethers
- 2007Study of efflorescence forming process on cementitious materials // Etude du processus de formation des efflorescences sur des matériaux cimentaires
- 2007Structural transformations of bioactive glass 45S5next term with thermal treatmentscitations
Places of action
Organizations | Location | People |
---|
document
Effect of Citric Acid and Polycarboxylate Superplasticizers (PCE) on Hydration and Rheology of Sulfoaluminate Cement
Abstract
The production of normal portland cement (NPC) accounts for about 5%-7% of the total man-made CO<sub>2</sub> emissions. One of the low CO<sub>2</sub> alternatives to NPC is sulfoaluminate cement (CSA), mainly composed of ye’elimite (C<sub>4</sub>A<sub>3</sub>S), belite (C<sub>2</sub>S) and sulfate source (CS or CSH<sub>2</sub>). Its main hydrated phase is ettringite (C<sub>6</sub>A<sub>3</sub>SH<sub>32</sub>). CSA are known for their poor workability and their short setting time, which require the use of superplasticizers and retarders. The aim of this work is to investigate: (i) the effect of citric acid and polycarboxylate superplasticizers (PCE) on the hydration and rheology of CSA; and (ii) the effect of citric acid on the dispersing effectiveness of PCEs. Two PCEs, with the same chemical structure and different molecular structure, were studied. Isothermal calorimetry and thermogravimetric analysis (TGA) were used to describe the hydration process, while rheological properties were characterized with a flow test. Adsorption measurements were carried out with total organic carbon analyzer and ionic chromatography. The results show that the combination of citric acid and PCE allows better retention of workability over time. However, a competitive adsorption between citric acid and PCE decreases the initial dispersion.