People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Katsivalis, Ioannis
Chalmers University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2024Hydrogen permeability of thin-ply composites after mechanical loadingcitations
- 2024Fatigue performance and damage characterisation of ultra-thin tow-based discontinuous tape compositescitations
- 2024Strength analysis and failure prediction of thin tow-based discontinuous compositescitations
- 2024Durability of an adhesively bonded joint between steel ship hull and sandwich superstructure pre-exposed to saline environment
- 2024A 3D voxel-based mesostructure generator for finite element modelling of tow-based discontinuous compositescitations
- 2023Durability of an adhesively bonded joint between steel ship hull and sandwich superstructure pre-exposed to saline environment
- 2022Multilayer leading edge protection systems of wind turbine blades
- 2022Multilayer leading edge protection systems of wind turbine blades:A review of material technology and damage modelling
- 2022Multilayer Leading Edge Protection Systems of Wind Turbine Blades. A Review of Material Technology and Damage Modelling
- 2022Mechanical and interfacial characterisation of leading-edge protection materials for wind turbine blade applicationscitations
- 2022Multilayer Leading Edge Protection systems of Wind Turbine Blades: A review of material technology and damage modelling
- 2020Development of cohesive zone models for the prediction of damage and failure of glass/steel adhesive jointscitations
- 2019Failure prediction and optimal selection of adhesives for glass/steel adhesive jointscitations
- 2018Strength evaluation and failure prediction of bolted and adhesive glass/steel jointscitations
Places of action
Organizations | Location | People |
---|
document
Multilayer leading edge protection systems of wind turbine blades
Abstract
The use of composites opens great prospects in the design and manufacture of the wind turbine blades due to their optimization versatility. Blade manufacturers employ polymeric surface materials to protect the composite structure from exposure to repeated impact of rain droplets which are mostly contributing to the leading edge erosion of wind turbine blades. Modelling tools considering multicomplex stress states and the material degradation are required for design purposes toward protection performance. This investigation summarizes a initial review based on two main issues: firstly, the LEP material configuration used in industry as a multilayer system considering the blade integration technology and, secondly, the modelling techniques and numerical procedures currently used to predict both wear surface erosion and interface delamination failure. The work is conducted in the framework of the IEA Wind TCP (International Energy Agency Wind Technology Collaboration Programme) - Task 46 Erosion of wind turbine blades.