People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Fivel, Marc C.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (29/29 displayed)
- 2023Influence of microstructure on mass loss caused by acoustic and hydrodynamic cavitation ; Effet de la microstructure sur la perte de masse engendrée par la cavitation acoustique et hydrodynamique
- 2023Comparison of acoustic and hydrodynamic cavitation: material point of view ; Comparaison entre cavitation ultrasonore et hydrodynamique : point de vue du matériaucitations
- 2022Comparison of acoustic and hydrodynamic cavitation: material point of viewcitations
- 2022Ti3SiC2-SiC multilayer thin films deposited by high temperature reactive chemical vapor depositioncitations
- 2020Estimation of Cavitation Pit Distributions by Acoustic Emissioncitations
- 2019SPH modelling of a cavitation bubble collapse near an elasto-visco-plastic materialcitations
- 2018Cavitation erosion resistance assessment and comparison of three francis turbine runner materialscitations
- 2018Cavitation Bubble Collapse Monitoring by Acoustic Emission in Laboratory Testingcitations
- 2017Cavitation bubble collapse detection by acoustic emissioncitations
- 2016Dislocation/hydrogen interaction mechanisms in hydrided nanocrystalline palladium filmscitations
- 2016First steps of crack initiation and propagation in fatigue of FCC crystals studied by dislocation dynamics
- 2016First steps of crack initiation and propagation in fatigue of FCC crystals studied by dislocation dynamics
- 2016Effect of Grain Disorientation on Early Fatigue Crack Propagation in FCC Polycrystals: Dislocation Dynamics Simulations and Corresponding Experimental Validationcitations
- 2015Primary combination of phase-field and discrete dislocation dynamics methods for investigating athermal plastic deformation in various realistic Ni-base single crystal superalloy microstructurescitations
- 2015Cavitation erosion in UHMWPE: a three-dimensional FEM study
- 2015Numerical estimation of impact load and prediction of material loss in cavitation erosioncitations
- 2015Cavitation erosion: Using the target material as a pressure sensorcitations
- 2015Post-irradiation plastic deformation in bcc Fe grains investigated by means of 3D dislocation dynamics simulationscitations
- 2015Outstanding cavitation erosion resistance of Ultra High Molecular Weight Polyethylene (UHMWPE) coatingscitations
- 2015Towards numerical prediction of cavitation erosioncitations
- 2015Towards numerical prediction of cavitation erosioncitations
- 2013Effect of grain disorientation on early fatigue crack propagation in face-centred-cubic polycristals: A three-dimensional dislocation dynamics investigation.citations
- 2012Analysis of particle induced dislocation structures using three-dimensional dislocation dynamics and strain gradient plasticitycitations
- 2010Internal stress evolution in Fe laths deformed at low temperature analysed by dislocation dynamics simulationscitations
- 2008Amorphous and partially crystallized metallic glasses: An indentation studycitations
- 2008Introducing Dislocation Climb by Bulk Diffusion in Discrete Dislocation Dynamicscitations
- 2007Chapitre 8: Mechanical and Nanomechanical Propertiescitations
- 2005Degallaix a three dimensional discrete dislocation dynamics analysis of cyclic straining in 316L stainless steel.
- 2004Low-strain fatigue in AISI 316L steel surface grains: a three-dimensional discrete dislocation dynamics modelling of the early cycles. I: Dislocation microstructures and mechanical behaviour
Places of action
Organizations | Location | People |
---|
article
Low-strain fatigue in AISI 316L steel surface grains: a three-dimensional discrete dislocation dynamics modelling of the early cycles. I: Dislocation microstructures and mechanical behaviour
Abstract
The early stages of the formation of dislocation microstructures in low-strain fatigue are analysed, using three-dimensional discrete dislocation dynamics modelling. Simulations under various conditions of loading amplitude and grain size have been performed. Both the dislocation microstructures and the associated mechanical behaviour are accurately reproduced in single-slip as well as in double-slip loading conditions. The microstructures thus obtained are analysed quantitatively, in terms of number of slip bands per grain, band thickness and band spacing. The simulations show the crucial role of cross-slip both for the initial spreading of strain inside the grain and for the subsequent strain localization in the form of slip bands. A complete and detailed scheme for the persistent slip band formation is proposed, from the observation of the numerical dislocation arrangements.